SIMONS BASIC
“EXTENSION

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

SIMONS’ BASIC EXTENSION
USER GUIDE

SBX 6440/20

COMMODORE BUSINESS MACHINES (UK) LTD
675 Ajax Avenue
Trading Estate
Slough, Berkshire SL1 4BG
ENGLAND

SIMONS’ BASIC EXTENSION USER GUIDE

This manual was prepared on a COMMODORE 8000 series
computer system using a word processor. The files were
then electronically transmitted into a phototypesetter and
typeset by

KENTCHASE LTD., SLOUGH
without compositor intervention. The manual was printed
and bound by
CARTER LITHO, Slough
Special thanks to Gail Wellington and Marilyn Rutley who

helped with the preparation of this manual and Mark Palmer
for his help with the example programs.

SIMONS’ BASIC EXTENSION USER GUIDE

COMMENTS AND ERRATA REQUEST

TO THE READER

To the best of our knowledge, this manual is technically and
typographically correct at the time of going to print.
However, no matter how fine we make the sieve for catching
errors, sometimes a few slip through.

If you notice any mistakes, we would be grateful if you
would notify us of them. Comments, criticisms and
suggestions are also earnestly solicited.

Yours sincerely,
Clurss Mocigausbei

Chris Maciejewski.
Technical Author

COMMODORE BUSINESS MACHINES (UK), LTD.
675 Ajax Avenue

Trading Estate

Slough, Berkshire SL1 4BG

ENGLAND

SIMONS’ BASIC EXTENSION USER GUIDE

COPYRIGHT — SOFTWARE PRODUCT

This software product is copyrighted and all rights are reserved by:

D. S. Software

19 Reddings
Welwyn Garden City
Hertfordshire

AL8 7LA

The distribution and sale of this product are intended for the original purchaser only.
Lawful users of these programs are hereby licensed only to read these programs from
the medium into the memory of a computer solely for the purpose of executing the
programs. Security copies of the programs may be made only for their own use.
Duplicating for any other purpose, copying, selling or otherwise distributing this
product is a violation of the law.

COPYRIGHT — MANUAL

This manual is copyrighted and all rights are reserved. This document may not, in
whole or in part be copied, photocopied, reprinted, translated, reduced to any
electronic medium or machine readable form or reproduced in any manner without
prior consent in writing from COMMODORE BUSINESS MACHINES, LTD.,
Technical Publications Manager.

DISCLAIMER

Although programs are tested by COMMODORE before release, no claim is made
regarding the accuracy of this software. COMMODORE and its distributors cannot
assume liability or responsibility for any loss or damage arising from the use of these
programs. Programs are sold only on the basis of this understanding. Individual
applications should be thoroughly tested before implementation. Should you require
installation, maintenance or training, please consult your COMMODORE dealer.

TABLE OF CONTENTS

TABLE OF CONTENTS

SECTION ONE - INTRODUCTION TO SIMONS’ BASIC EXTENSION

e S
N —

INTBODUEGTION © 5 560005 550055 508 m 0805 5100008 amoninn w1800 lomsis e aon) 1-1
THE SIMONS’ BASIC EXTENSION MANUAL 1-1
LOADING SIMONS' BASIC EXTENSION. ...t 1-3
FROM DISKETTE . . i crc: « vussvi swanns s soss s i s hessmmsn s ok me s =8
FROM CABSETTE .. st cwmmmng cismns oommsss s knms s @65 o8 none o 1-3
SIMONS’ BASIC EXTENSION COMMANDS, 1-4
ENTERING COMMANDS e 1-5
CONVENTIONS ... e 15

SECTION TWO - PROGRAMMING AIDS

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9

INTRODUCTION . e e 2
RENUMBER . .. e 2]
DELETE oo ioenis s snumne venmne s snmass v swssns camsas e 5 ams & sm s 22
PR TR 55 555 55559515 8525505 5 6k i 1)] 58 R] i e i 2-3
HELP e 2-4
CHAIN L 2=5
PROTEGT oo vavinss cmms i sn mmas oamms s s siom sine $diain s & =50 s & =m0 2-6
FORGE .« : oo cintns sompns s nsiasins brRssas vk @she &smss s b dmmns 276
BGBE s ciisss 2 6mam55 6aanns bimhn e somommnnmmmons smsatieimi Do e o ok s 2-8

SECTION THREE - ARRAY MANIPULATION

NE I BIICAHOIN] o0 o e s o ch oo as 600008500 0080 8006 00 5850 00k 0000 6 G 3-1
WHAT IS AN ARRAY 2 o e 3-1
MULTI-DIMENSION ARRAYS e 3-1
MANIPULATING ARRAY S i i i s e oie s el e sis e e sleialisae 3-1
ARRAY COMMANIBDS e e e s ss e e e ool s sl salfe s ool s 3-3
CONVENIIONS c o aie c i o leiie o 5o ieis s 8 e o <o el o) e ool s i alle e iels 3-3
S I A B R o e e e e e el e e e Skt e) B A s SRS e) e o) e 3-3
R R N T A R R 3-4
ZE[R] IR R G e coas G0 0m o R 00T HOED 0 UGB 0YREED 00D G0 0H0D K0 0G5 3-5
ADBIARR . e e i e et e s e e el e s 3-5
AU B A RIRI 50 orie & 5 0 5 G0 20 6 1 S 10 B 0 e 05 B B e G 0 5 3-6
I A R R e e e 37
D A R R 3-8
ABIBR AN 00 om0 3 600 0 510 G 1 6195 0210 5 6 G106 B 3) 1 6815 01010 0 6/ 61510 015 01 3-9
SIUIE AILL ¢ oo cnposoconmsooannmononoeosotstos0000s00030%000 000 3-9
IV A B I s e e st e et s it e <) 8151 s e 0 il o8 s s o 3-10
B A e o o o e B o0 G) e B 1 2 e 1 G 1 5) i B G i 3-10
@ Y A R R e e s 3-11
LN R T A R R e 3-11
RS AN DI AN RERY e 0 e 010 016 200 61 668 D B 00 61099 6 G510 510 010 600 55 000 8 010 O.¢ 3-12
SEB ARG o e s S A s o e oie o il e et s alishs ssss) she ebtaltes s s atieial o s 3-12

SIMONS’ BASIC EXTENSION

312307
3.2.18
3.2.19
3.2.20
3.3
3.3.1

4.1
4.2
4.21
422
4.3
4.3.1
4.3.2
4.4
4.41
4.4.2
4.5
4.51
4.5.2

5l
b2
5.3
5.4
55
5.6

B o e s o e e e e i n asim s S A a5 B 5 B R e e 3-13
ELEMENT S o e e 3-14
VI & e e v s im0 i o s s e s o 5 g S s o 3-14
AR B el s e s e e o s (s 5 et 5 s i sl o o s e s S-15
STRING ARRAY MANIPULATIONo 3-16
SOIRTT o cane e alam s b e aal s s n i miins e o oie) o s s ' e s o st i 1 L 3-16

INTRODUCTION .. e e e 4-1
ADDITIONAL TRIGONOMETRICAL FUNCTIONS 4-1
(S -1 B S I T s e R e 4-1
e o i o s 5 &+ R 554 B 8 o 4 88 1) o R A s 4-1
NUMERIC CONVERSION e 4-2
BIN$ - DECIMAL TO BINARY CONVERSION 4-2
HEX$ - DECIMAL TO HEXADECIMAL CONVERSION 4-2
SPECIAL CALCULATIONS - 560 s vtsmsla sr 0 iminisima ss s s saaiain = 4-3
AU R s i 560505 w6 5 5k 50508 SR & 0 A SR 3 5 ohen A URealie oo e s 4-3
By (T AP PRSP 1= | ST 0 o S TONY e SRS 4-4
EVALUATING A STRING AS A BASIC EXPRESSION.............. 4-5
NV U e s 0w o o 0 550 € R 58 R 6 0 LR S e s ek 4-5
BIACIE 35 5 1 500 6 b 530 A 90515 o el 1 Sl 105 o6 il Pl el e e 4-6

INTRODUGTION ;5 0n v 2k v el coisas s s im il i s sitn o8 5 shaid sia0s o S5
B0 E S PR PO R o O S SRR, PR Szl
L R b 55 8 By b 98 0 5o o e L P T TS 0 O S S 5-2
HIMEM . L 5-2
LOMEM .. e 95-3
L8 = R S S 9=3

SECTION SIX - HIGH-RESOLUTION AND MULTI-COLOUR GRAPHICS

INTRODUC TN s o i e o500 05 s bl s 68 o 2o e e e s e oo s e ot s 6-1
HIGH-RESOLUTION AND MULTI-COLOUR GRAPHICS

(COIMIANIDES 5 5 o 2 e b e 0 516 5 00 & i it o B Bl S8 6 7 5 5646 6 7 5 200 0 0.0 2 3k 6-1
G R st s 5k O e oo o ool B B e o B g s o e TSRO e U N 6-1
TR il B 2 s v ot o0 0) VP s) e Wl 6-2
E G RN L Tl v v ol o) v w3 TN 1 e PR S PG 6-3
L g I e 6-4
LABEE 0 0t vho i 058 5% 45 5pisis 6 805 58 58 8 1 aevhe B b Johtadn asions s s et et o a o m e 6-5
[DARYAAY THO) & e s 2 B aioi0 6 G 6 6816 8 0 05 S i BB 6 65 0/ o & 518 6o Bl S 60 Gl 8.0 8 0 0% 0o § 6-6
WALIHR o ;o o SRR, R L 1 - B, - 00 0 g 0 0 s g 6-7
BTN o o ome sl a5 4 o 81 » 5 0 o WAt 55 0 S e e s e 6-7
SCALING FUNGTVONS 550 diianss 1o domme dsiae ¢ ss on e s e s 6-8
e R R o 6-8
SHOK o a5 5 0% & o 205 58 R SR8 02 B 306 5 TR 6 [7 A e s I S 6-9
ST E00.0 2320 08 2070005 B v B B TR b B o s ot om0 o e T 0, B 6-10

vi

TABLE OF CONTENTS

SECTION SEVEN - LOW-RESOLUTION GRAPHICS COMMANDS

Tl INTRODUCTION ..o e, 7=1
7.2 LOW-RESOLUTION GRAPHICS COMMANDScoovvvnn... =l
7.2.1 LOW RES .0 covossiinmnnas simmns - mmeens i lad L Lt nbd 7-1
282 PRHEPARE .« .55 0 comme cnmnpn s semsns on s smns sl 8 ks 5 s i a =8
7.2.8 PUSH ¢« vt o e s s sais s ciamw s s oo 465 5.8 5 55 5,560 5 Somale e e w v -3
7.2.4 I R . | - B 7-4
7.3 SCREEN FUNCTIONS .. iuscs s shmmns omenma oo et chis o s en s 7-4
7.3.1 PONT < s a2 e 05985 41505 mmmin om oiea s s e a5 e sl o e 56 18 40 s o 7-4
7.3.2 LIBPER oo sumamss s cnmins snor o BBl om o adenk o (IS E ae] wliber = 7=5
7.3.8 EC O . -5
7.3.4 3 O VD W Tl | 4 I LN o . IR -7
7815 SO . oo viniins 1 pm5mms s mas St sars oSl st s e Sl W o s Ti=lh
7.3.6 SOHB o525 caitns srimmms o o crvn s yemshn dsses e I 7=8
7.3.7 BMICOL . oias cmmns susmns somumss «5m s o5 o0 st oot e v oim s sl 7-8
7.3.8 DESIGINL o o oo 50 s imae 50507 5 55 w75 S0 #0555 B oot o oo s ot 0 3 0 =9
7319 ROTATE s si0s rnswn0s 5 05505 56055000 nafion 5 e 8 o0 W05 5 S Sl 7-10
7.3.10 BOKELASH 71 o5 mima 0 0mm s o oiemeinis o oo st s winens vissmiorsla s s s o 7-11
7.3.11 P 5806 R e m b 3 nie e e swe s e 8 R s R AR s B e & e (=12

8.1 INTRODUCGTION ..o e 8-1
8i2 SPRITES .. 8-1
8.2.1 INTRODUGTION . o oo mos wwmmmins smwans s 6mmsts b dmeme omionas «nasses 8-1
8.2.2 WHAT IS A VECTOR DRIVEN SPRITE?. . ..o 8-1
8.2.3 WHAT IS A FRAME? . .o i 8-2
8.3 SPRITE MANIPULATION COMMANDS ..., 8-2
8.3.1 SPRITE 8=2
8.3.2 XVEC 8-5
8.3.3 L = 8-6
8.3.4 BARBIEIR. « cinsiir c 5t 595 5§ 8050 mn o0 mmieimin om i rmeis s siwie sy oo mas o o se 1k 8-6
8:3.5 Bp ot | | O D 8-7
8.3.6 ST AR 8-7
8.8.7 CLEAR 8-8
8.3.8 T U 89
8.3'9 L R 8-9
8.3.10 L P P s 8-10
8.3.11 SIPHIE wn v 5005 8 5im o vin i v e 4 s s e e i ¥ S R < 8-11
8.3.12 SPEIY 00 toe v simncivs cmie s o ey s e s e s R 3SR 8-12
8.3.13 SPR LOC =112
8.3.14 INV ER T L 8138
8.3.15 BEVEBSE ;0 s 0008 7 60 0 0085 0008 5008 508 5m 0a) 2 2 n it i nim o ' 5 kmn sl s 00 8-15
8.3.16 SITOMY § cio 0605 555555 5 5565 210 2o e o omin e o s = el 8 8 e s o a-il5
8.3.17 ON DETECT .t 8-17
8.3.18 CONTINUE .. e e 8-18
8.3.19 TRANSEER .. 0o s us coinmmns s memiid s ok 555 562 m mn o) skt s s ias 8-19
8.3.12 CREAITE i smnns s cniinins 555558 3 &8 e = 2ximsme s e i mt s oo s o 8-20
8.4 NOTES ON VECTOR DRIVEN SPRITESccounnn.. 8-20

vii

SIMONS’ BASIC EXTENSION

SECTION NINE - MUSIC COMMANDS

2h 1
9.2
9.3
9:8.1
9.3.2
9.3.3
9.3.4

INR@ B G @ N e e L D R . ot 9 i
WHTATHSTANE | IETER 20 o e e o e 81
WIS (@M MFANIDESE 6 66 o 5 a0 6 0089/ 00 0.5 60 5100 606 G150 6.6 5 15608 & Galnm 6 on ¢ 9-2
A R e S e B R A S S SRV o o = 2 0 0 0 Bl ol 9-2
B DY i i e o SN 6 3 S 3 s 0 0 B e s 92
PUIIESE < i s e 1) e e 5 B oo) 2 50 s 0 6 o o oo s e 9-3
BEER . . o e o e ot e e el e i siies i s e s s s e 0 e el RN e e ¢ e 8 9-4

SECTION TEN - EXAMPLE PROGRAMS

10.1
10.2
10.3
10.4

INHRICIBIUIGTICOING o o 5 5 0 60 0 oo 0 0.0, 0500 610 05 0819 6.0 6 ik 0 /5 B 5 e o ¢ 10-1
PROGRAM 1 - GRAPH PLOTTER ... 10-1
RR® G AN F2ER B) (G Y R P SRR 10-3
PROGRAM 3 - ROAD BACER . :cosus somans s vim e s wisuidals sonns 10-5

APPENDIX A - ERROR MESSAGES

GLOSSARY

INDEX

Viii

INTRODUCTION

SECTION ONE
INTRODUCTION TO SIMONS’BASIC EXTENSION

1.1 INTRODUCTION

SIMONS’ BASIC EXTENSION contains an additional 91 commands to supplement
those supplied by the SIMONS’ BASIC cartridge. These additional commands fall into
seven categories as detailed below:

PROGRAMMING AIDS, such as CHAIN and ALTER, to assist in the entry and de-
bugging of your BASIC programs.

ARRAY MANIPULATION commands, such as SET ARR, ADD ARR and SCRATCH to
enable you to perform calculations on or between the information held in numeric
arrays.

Extra NUMERIC AIDS, like DEG, to provide more flexibility in mathematical
calculations.

MEMORY MANIPULATION commands, like HHIMEM and LOMEM to allow you to set
memory limits quickly and easily.

GRAPHICS commands, such as LABEL and ROTATE, to facilitate the design and
presentation of graphics displays.

Extra SPRITE MANIPULATION commands, like INVERSE and CREATE, to provide
you with even greater control over sprite creation and animation.

Additional MUSIC commands, suchas FILTER and PULSE, to provide a simple way of
utilising the extensive sound and music capabilities of the COMMODORE 64.

The commands provided by SIMONS’ BASIC EXTENSION, used in conjunction with
those supplied by the SIMONS’ BASIC cartridge, allow even the inexperienced BASIC
programmer to utilise fully the power of the COMMODORE 64.

1.2 THE SIMONS’ BASIC EXTENSION MANUAL

This manual is divided into ten sections as outlined below:

SECTION ONE - INTRODUCTION TO SIMONS’ BASIC EXTENSION

This section discusses the commands provided by SIMONS’ BASIC EXTENSION
(SBX) in broad terms. It explains how to load SBX either from diskette or cassette and
how to enter a SIMONS’ BASIC EXTENSION command. Also included are the
conventions used in this manual to describe each command.

14

SIMONS’ BASIC EXTENSION

SECTION TWO - PROGRAMMING AIDS
Section Two contains commands, such as CHAIN and DELETE to speed up the entry
and de-bugging of your BASIC programs.

SECTION THREE - ARRAY MANIPULATION

Here commands such as SET ARR and ADD ARR are explained. These enable you to
carry out arithmetic operations on or between single or multi-dimensional numeric
arrays.

SECTION FOUR - NUMERIC AIDS

Section Four contains commands like BIN$ and HEX$ which are used respectively to
convert a decimal number into its binary or hexadecimal equivalent. Also included are
the DEG and GRAD functions. The first converts degrees into rads while the second
converts degrees into rads.

SECTION FIVE - MEMORY MANIPULATION COMMANDS

This section includes the commands DEEK and DOKE, which allow you to
respectively read or assign a 16 bit number in memory, and the commands HIMEM
and LOMEM which enable BASIC memory parameters to be read and/or altered.

SECTION SIX - HIGH-RESOLUTION AND MULTI-COLOUR GRAPHICS
Section Six contains commands, such as GRID, VLIN and MCOL, to enable you to
draw shapes on a graphics screen.

SECTION SEVEN - LOW-RESOLUTION COMMANDS
This section contains commands for use when drawing on a normal, low-resolution,
screen.

SECTION EIGHT - SPRITE MANIPULATION COMMANDS
Section Eight is concerned with the creation and movement of Sprite graphics.

SECTION NINE - MUSIC COMMANDS
Here, four additional music commands, FILTER, MODE, PULSE, and BEEP are
discussed.

SECTION TEN - EXAMPLE PROGRAMS

Section Ten contains three example programs to demonstrate some of what may be
achieved when using both SIMONS' BASIC and SIMONS' BASIC EXTENSION
commands.

APPENDIX A - ERROR MESSAGES
A list of the SIMONS’ BASIC EXTENSION error messages that you may encounter
and their probable causes are given in this Appendix.

GLOSSARY

A list of terms that are used in this manual and their definitions are given in this
section.

1-2

SHIF]

0 ,//5’&7(’

1983
2&07%)

INTRODUCTION

1.3 LOADING SIMONS’ BASIC EXTENSION

WARNING
SIMONS’ BASIC EXTENSION CAN ONLY BE
LOADED WITH THE SIMONS’ BASIC
CARTRIDGE IN PLACE.

1.3.1 FROM DISKETTE

Make sure that your computer is switched off. Insert the SIMONS’ BASIC cartridge,
label uppermost, into the cartridge slot at the rear of your computer (for more
information on starting the SIMONS’ BASIC cartridge see Section 1.3 of your
SIMONS’ BASIC MANUAL). Switch on the computer, disk drive, and TV or monitor.
Insert the SIMONS’ BASIC EXTENSION disk into the disk drive with the label
uppermost, and towards you. Type:

LOAD ":*",8,1

and press RETURN. After a short while the SIMONS’ BASIC Il title page appears.
Once the program is loaded, the following message is displayed:

*xx SIMONS BASIC 2 xx%
(C)1984. ALL RIGHTS RESERVED
28287 BASIC BYTES FREE

1.3.2 FROM CASSETTE

Make sure that your computer is switched off. Insert the SIMONS’ BASIC cartridge,
label uppermost, into the cartridge slot at the rear of your computer (for more
information on starting the SIMONS’ BASIC cartridge see Section 1.3 of your
SIMONS’ BASIC MANUAL). Insert the SIMONS’ BASIC EXTENSION cassette into
the cassette unit. Switch on the computer, and TV or monitor. Type:

LOAD

and press RETURN. After a short while the SIMONS’ BASIC Il title page appears.
Once the program is loaded, the following message is displayed:

**xx SIMONS BASIC 2 * %%
(C)1984. ALL RIGHTS RESERVED
28287 BASIC BYTES FREE

All the SIMONS’ BASIC EXTENSION commands are now included in the operating
system of your COMMODORE 64, together with those supplied by the SIMONS’
BASIC cartridge and may be used like any other BASIC command. Note that the
combination of SIMONS’ BASIC with SIMONS BASIC EXTENSION uses
approximately 10K of the COMMODORE 64’s memory, so you are left with 28K free for
your programs.

1-3

SIMONS’ BASIC EXTENSION

1.4 SIMONS’ BASIC EXTENSION COMMANDS

The following is a list of those commands supplied by SIMONS' BASIC EXTENSION:

Commands for entering and debugging programs:
RENUMBER, DELETE, ALTER, HELP, CHAIN, PROTECT, FORCE, DS$.

Commands for manipulation of numeric arrays:
SET ARR, ZER ARR, PRINT ARR, ADD ARR, SUB ARR, MUL ARR, DIV ARR, ADD
ALL, SUB ALL, MUL ALL, DIV ALL, COPY ARR, INPUT ARR, READ ARR,
ELEMENTS, MIN, MAX, SCRATCH, SUM, SORT.

Commands for numeric conversion and bit manipulation:
GRAD, DEG, BIN$, HEX$, CALCX, CALCY, EVAL, BACK.

Commands for memory manipulation and configuration:
DEEK, DOKE, HIMEM, LOMEM, SCREEN.

Commands for graphics plotting and screen handling:
GRID, TICK, LABEL, DRAW TO, VLIN, HLIN, SCALE, SCX, SCY, LOW RES,
DESIGN, MCOL, ROTATE, FONT, UPPER, ECOL, BCKFLASH, CCOL, SCOL,
SCHR, x.

Commands for storing screen data in memory or on an external storage device:
PREPARE, PUSH, PULL, HSAVE, HLOAD.

Commands for generating/animating Sprites:
INIT, SPRITE, CREATE, TRANSFER, INVERT, REVERSE, CHANGE, BARRIER,
INFO, START, CLEAR, SPRX, SPRY, SPR LOC, XVEC, YVEC, ON DETECT,
CONTINUE, SHOW, NORMAL.

Commands for music synthesis:

EIERERFMOBEFPULSE ABEER:

1-4

INTRODUCTION

1.5 ENTERING COMMANDS

All SIMONS’ BASIC commands are entered in the same way as those in standard
Commodore BASIC. Most SIMONS’ BASIC commands can be used in direct mode or
as part of a program. Any exceptions to this rule are indicated in the introduction to
each section of the manual, or in the section in which the command appears.

1.6 CONVENTIONS

The format of each SIMONS’ BASIC command in this manual is presented using the
following method of notation:

1.

2

Brackets and items written in capital letters must be typed exactly as shown.

Items printed in lower case indicate a user-supplied or variable entry, e.g.
coordinates or, a plotting colour.

Other symbols, such as quotation marks and commas, must be typed exactly as
shown.

Pressing the RETURN key is indicated by <RETURN>>.

Keys other than alphabetic and numeric characters are indicated in the listing by
the name onthe key surface enclosed in <>, e.g. <CLR/HOME>. These appear on
the screen as reversed characters. If two keys are enclosed, e.g. <CTRL RVS ON>,
you must hold down the first key before pressing the second key.

With the exception of the FIND command (see Section 2.10 of your SIMONS’

BASIC MANUAL), all SIMONS’ BASIC keywords must be separated from the first
parameter of the command with a space.

CoMMANQO | Col D S M A K EL7 E xT . YOM 2T

1=5

PROGRAMMING AIDS

SECTION TWO
PROGRAMMING AIDS

2.1 INTRODUCTION

SIMONS’ BASIC EXTENSION contains additional commands to assist you when
entering and debugging BASIC programs.

The RENUMBER command renumbers a program listing including all GOTOs and
GOSUBs. DELETE allows you to erase a specified section of a BASIC program. The
ALTER command permits you to replace one character string or command with
another. The HELP command displays the program line where an error occurred and
highlights the position of the error within the line. CHAIN permits you to load one
program from within another without having to concern yourself with resetting
memory pointers.

NOTE
With the exception of the CHAIN command, all the
commands in this section can ONLY be used in direct
mode, NOT as part of a program.

2.2 RENUMBER
FORMAT: RENUMBER start line,increment
RURPOSE: To renumber a BASIC program.

The RENUMBER command allows you to renumber a BASIC
program including all GOTOs and GOSUBs. The first parameter in
the command is the start line number of the renumbered program.
The second parameter is the interval between line numbers. Using
RENUMBER with no parameters renumbers the program starting at
line 1000 in increments of 10.

EXAMPLE: To renumber the following program starting atline 100 in increments
of 25:

ENTER: 10 GET A$: IF A$ = " THEN 10
20 IF A$ = CHR$(13) THEN GOSUB 40
30 GOTO 10

40 PRINT "YOU PRESSED RETURN"
50 FOR X =1 TO 2000: NEXT
60 RETURN

2-1

SIMONS’ BASIC EXTENSION

COMMAND: RENUMBER 100,25
TYPE: LIST <RETURN>

DISPLAY: 100 GET AS$: IF A$ =" THEN 100
125 IF A$ = CHR$(13) THEN GOSUB 175
150 GOTO 100
175 PRINT "YOU PRESSED RETURN"
200 FOR X =1 TO 2000: NEXT

225 RETURN
2.3 DELETE
FORMAT: DELETE start line number - end line number
PURPOSE: To delete program lines from the memory of the COMMODORE 64.

The DELETE command operates on a specified line range, in the
same way as the BASIC command LIST. The various formats of the
DELETE command are listed below:

DELETE In Deletes line In only

DELETE sln - fin Deletes all lines between sin and fln inclusive

DELETE=fln Deletes all lines from the start of the program to fin
inclusive
DELETE sln- Deletes all lines from line sIn to the end of the

program inclusive.

NOTE
The parameter In represents a single line
number, sIn is the start line number, and fIn is
the finish line number.

EXAMPLE: To delete the first two lines from the following program:
ENTER: 10 REM DELETE COMMAND

20 REM ONE OF THE MANY

30 REM USEFUL SIMONS’ BASIC

40 REM AND SIMONS’ BASIC

50 REM EXTENSION COMMANDS
COMMAND: DELETE-20 <RETURN>

R RE: LIST <RETURN>

2-2

PROGRAMMING AIDS

DISPLAY: 30 REM USEFUL SIMONS’ BASIC

40 REM AND SIMONS’ BASIC

50 REM EXTENSION COMMANDS
RESULT: Lines 10 and 20 have been removed from the program.
EXAMPLE: To delete lines 30 and 40 of the remaining program:

COMMAND: DELETE 30-40 <RETURN>

TYPE LIST <RETURN>

DISPLAY: 50 REM EXTENSION COMMANDS

RESULT: Lines 30 and 40 have been removed from the program.

24 ALTER

FORMAT: ALTER old code&new code

or: ALTERold string&new string

PERRPOSE: To search for an existing code or character string and replace it with a

new code or character string.

If the character string to be ALTERed is enclosed in quotation marks,
ALTER only replaces the matching character strings which
themselves are bounded by quotation marks in the program. Note
that in REM statements, BASIC, or SIMONS’ BASIC key words which
are notenclosed in quotation marks, forexample 10 REM PRINT, will
not be changed by the command ALTER PRINT&PRINTS.

EXAMPLE: To change the character string "JOHN" into "MIKE" in the following
program:
ENTER: 10 INPUT "IS YOUR NAME JOHN":A$

20 IF LEFT$(AS$,1)<>"Y"THEN 40
30 PRINT "HI JOHN";:PRINT "GREAT TO SEE YOU”
40 END

COMMAND: ALTER "JOHN"&"MIKE"” <RETURN>

DISPLAY: READY

TYPE: LIST <RETURN>

2-3

SIMONS’ BASIC EXTENSION

DISPLAY: 10 INPUT 1S YOUR NAME MIKE";A$
20 IF LEFT$(A$,1)<>"Y"THEN 40
30 PRINT "HI MIKE";:PRINT "GREAT TO SEE YOU"

40 END
RESULT: All occurrences of the character strings "JOHN" have been changed
to "MIKE".
2.5 HELP
FORMAT: REER
PURPOSE: To display the line in which an error occurred during program
execution and highlight the position of the error in reverse field
characters.
The HELP command only works ifthe command is given immediately
after an error has been detected by the BASIC interpreter and whilst
the error message is displayed.
NOTE
Because of the way the BASIC interpreter
works, the exact error may not always be
displayed. It will, however, be very close to the
reverse field area.
EXAMPLE: To find the error in the following program:
ENTER: 10 FOR CO=1TO 10
20 PRINT CO+2%3.142
30 NEXT C
RRE: RUN <RETURN>
DISPLAY: 7.284

? NEXT WITHOUT FOR ERROR IN 30
COMMAND: HELP <RETURN>

DISPLAY: NEXT C (the letter "C" appears in reverse field display.)

2-4

2.6 CHAIN
FORMAT:

PURPOSE:

EXAMPLE:

ENTER:

TYPE:

ENTER:

Y RE:

DISPLAY:

COMMAND:

DISPLAY:

DISPLAY:

PROGRAMMING AIDS

CHAIN "program name' ,device number
To load and run one program from within another.

The CHAIN command allows you to load one program from another
program and automatically RUN the second program after it has
been loaded. This means that longer programs can be loaded from
smaller programs without the necessity of changing BASIC memory
pointers. The parameter within quotation marks is the name of the
program you wish to load. Device number refers to the storage
medium on which the program to be loaded is stored. Thisis "8" fora
disk unit and "1” for a cassette unit. If not specified, the device
number defaults to "1”, i.e. cassette.

To load and run the program named "PROG2" from within another
program:

10 PRINT"<SHIFT/CLR/HOME>"

20 PRINT "THIS PROGRAM"”

30 PRINT"DEMONSTRATES THE EFFECTIVENESS"

40 PRINT"OF THE CHAIN COMMAND"

Save this program on cassette using the name "PROG2" to identify it.
NEW <RETURN>>

Rewind the cassette tape to the beginning of the program.
10 PRINT "PRESS RETURN TO LOAD"

20 PRINT "THE NEXT PROGRAM"

30 GET AS: IF A$ <> CHR$(13) THEN 30

40 CHAIN "PROG2"

RUN <RETURN>>

PRESS RETURN TO LOAD
THE NEXT PROGRAM

Press the RETURN key.

PRESS PLAY ON TAPE

Press the PLAY key on the cassette unit. (The screen goes blank.)
THIS PROGRAM

DEMONSTRATES THE EFFECTIVENESS
OF THE CHAIN COMMAND

25

SIMONS’ BASIC EXTENSION

Y PE:

DISPLAY:

RESULT:

LIST <RETURN>

10 PRINT"<SHIFT/CLR/HOME>"

20 PRINT "THIS PROGRAM"

30 PRINT"DEMONSTRATES THE EFFECTIVENESS”
40 PRINT"OF THE CHAIN COMMAND"

The first program has been erased from memory and "PROG2" has
been loaded and executed automatically.

NOTE
The above example may also be effected with a
disk unit. Line 40 of the second program must
be changed to:

490 CHAIN "PROG2",8

2.7 PROTECT

FORMAT:
or:

PURPOSE:

PROTECT "PROGRAM NAME",8 (for disk)
PROTECT "PROGRAM NAME" 1 (for cassette)
To protect a program from being listed.

The PROTECT command has exactly the same syntax as SAVE, and
may be used to stop your programs from being studied, or saved.
Should RUN/STOP, with or without RESTORE, be pressed at any
time during the execution of the program, the program is re-run from
the beginning. This also applies if an error should occur. When a
program is being protected, the screen clears, and SAVING
PROGRAM NAME appears. When finished, the 64 returns to direct
mode. Once a program has been protected, it is loaded with LOAD
"PROGRAM NAME"”,8,1 if on disk, and LOAD "PROGRAM
NAME",1,1 if on tape. When the program is loaded, it runs
automatically.

WARNING
ALWAYS ENSURE THAT YOU HAVE A NON-
PROTECTED COPY OF THE PROGRAM, AS
ONCE IT HAS BEEN PROTECTED, YOU ARE
UNABLE TO LISTIT, AND THUS CHANGE IT.

2-6

PROGRAMMING AIDS

EXAMPLE: To protect a program from being listed:
ENTER: 10 HIRES 15,0

20 COLOUR 5,0

30 MULTI 3,5,7

40 TEXT 10,20,"THIS PROGRAM",1,2,12
50 TEXT 70,60,"1S",2,2,12

60 TEXT 24,100,"PROTECTED!",3,2,12
70 PAUSE 4

80 STOP

Y PE: LIST <RETURN>

Protect the program using:

PROTECT "PROG",8 (for disk)
or: PROTECT "PROG",1 (for cassette)
TYPE: NEW <RETURN>

Load the program using:

LOAD "PROG",8,1 (for disk)

or: LOAD "PROG",1,1 (for cassette)

RESULT: The program runs automatically, and you are unable to stop
execution.

2.8 FORCE

FORMAT: FORCE errn

PURPOSE: To force an error.

This command forces an error that would otherwise not have
occurred. The parameter errn is equal to the error you wish to force.
For a list of the error numbers see section 10.2 of your SIMONS’
BASIC manual.

2-7

SIMONS’ BASIC EXTENSION

29 DS$

FORMAT: PRINT DS$

or: A$=DS$

PURPGO®SE: To read the disk error channel.
For more information on the disk error channel, see page 18 of your
1541 manual. DS$ reads the disk error channel. Four variables that
describe the error condition are read. The first variable is the error
number, where @ denotes no error (for more information on the error
numbers, and messages, see page 43 of your 1541 manual). The
second variable is the error description. The third variableis the track
number on which the error occurred, and the fourth variable is the
block (also known as a sector) number inside that track.

EXAMPLE: To read the disk error channel:

INEE: PRINT DS$ <RETURN>

DISPLAY: 00, OK,00,00

RESULT: This message denotes that no error has occurred.

NOTE
The length of DS$ is always 30, e.g. PRINT
LEN(DSS$) gives 30.

2-8

ARRAY MANIPULATION

SECTION THREE
ARRAY MANIPULATION

3.1 INTRODUCTION

3.1.1 WHAT IS AN ARRAY?

You were introduced to the concept of arrays in the User’s Guide supplied with your
COMMODORE 64 computer. (See pages 95 thru 103.) To refresh your memory, an
array is a group of subscripted variables. For example, A(15) is an array containing 15
individual items, or elements, of information. If you ran the program below:

10 A(1) = 21.56: A(3) = 13.78: A(4) = 13.89

then the memory would look like this:

A(D)
A1) 21.56
A(2)
A(3) 13.78
A(4) 13.89

This is called a one-dimensional array.
Arrays that contain more than 10 elements must first be DIMensioned like this:
10 DIM A(25)

This tells the computer that you want to set up a one-dimensional array with a
maximum of 25 elements.

3.1.2 MULTI-DIMENSION ARRAYS

Arrays may be single or multi-dimensional. For example, a two-dimensional array
would be written like this:

A(4,6)

and would be represented as a two-dimensional grid in memory.

1. A(4,6)

3-1

SIMONS’ BASIC EXTENSION

Each subscript in the array represents the row and column number in the grid where
the particular element of the array is stored.

If you assigned the value 16 to A(3,4), then 16 could be thought of as having been
placed in the 4th column of the 3rd row of the grid as shown below:

2.A(3,4) = 16

16

As with one-dimensional arrays, multi-dimensional arrays must first be DIMensioned.
For example:

10 DIM A(12,7)

would create a two-dimensional array in memory labelled A having 12 rows and 7
elements in each row.

3.1.3 MANIPULATING ARRAYS

In standard BASIC, manipulation of arrays involves multiple operations requiring a
great many instructions and, consequently, a great deal of memory space. The array
commands provided by SIMONS’ BASIC allow you to perform these operations using
simple statements.

The ZER ARR command allows you to set each elementin an array to zero, while the
SET ARR command enables all the elements in an array to be set to a specified
number or value. PRINT ARR allows you to display the contents of an array. ADD ARR
enables the elements of two arrays to be added, while the SUB ARR command allows
you to subtract the contents of one array from another. MUL ARR permits the
contents of two arrays to be multiplied together; the DIV ARR command allows you to
divide the contents of one array by another. The ADD ALL command permits you to
add a particular value to each element in the array while the SUB ALL command
allows you to subtract a specific number from each elementinanarray. The MUL ALL
command multiples all the elements in an array by a specified number and DIV ALL
will divide all the elements by a selected value. The INPUT ARR command allows an
array to be filled directly from the keyboard while READ ARR reads data into an array
from a block of data statements. The COPY ARR command copies the contents of one
array into a second, empty array. The SCRATCH command clears an array from
memory.

ARRAY MANIPULATION

SIMONS’ BASIC EXTENSION also supplies a number of array functions. The
ELEMENTS function returns the number of elements in an array while the SUM
function adds all the elements of an array together. The MIN function returns the
lowest value in an array while the MAX function returns the largest value.
NOTE
The array commands provided by SIMONS’ BASIC are

designed to be used on real number or integer arrays.
Arrays containing strings CANNOT be used.

3.2 ARRAY COMMANDS
3.21 CONVENTIONS

When using SIMONS’' BASIC array manipulation commands, the following
conventions must be observed:

1. Each array must contain no more than 8 dimensions, i.e.: DIM A(1,1,1,1,1,1,1,1).
2. The zero (@) position in an array must NOT be used.

3. Thearraysinthe calculation and the array into which the result of the calculation is
placed must be of the same size, i.e. the same dimensions and number of elements.

4. All the arrays must be correctly DIMensioned.

5. The array into which the result of a calculation is placed must be empty.

Failure to conform to any of the conventions above will result in the message:

? SYNTAX ERROR

3.2.2 SET ARR

FORMAT: SET ARR array name, value

PURPOSE: To assign a value to each element in an array.
The SET ARR command allows you to setevery elementin an array to
a specified number. This number can be a pre-determined value or

the result of a computation.

EXAMPLE: To place the number 6 in each location of a 4 row by 3 column two-
dimensional array:

3-3

SIMONS’ BASIC EXTENSION

ENER:

TYPE:

DISPLAY:

10 DIM AA(4,3)

20 SET ARR AA,6

30 FORX =1TO 4

40FORY =1TO3

50 PRINT AA(X,Y),: NEXT Y,X

RUN <RETURN>

6 6 6 6
6 6 6 6
6 6 6 6

3.2.3 PRINT ARR

FORMAT:

PURPOSE:

EXAMPLE:

ENTER:

TYPE:

DISPLAY:

PRINT ARR array name, print format
To display the contents of an array.

The PRINT ARR command allows you to display the contents of an
array. The first parameter of the command is the name of the array
you wish to display. The second parameter in the command indicates
the format in which the array is shown. The commands are as follows:

P - displays each element of the array on a new line
1 - causes each element to be separated by a space

2 - separates each element of the array by ten spaces (like using a
comma in a PRINT statement).

To print the contents of a one-dimensional array, each element being
separated by a space:

10 DIM BB(20)

OB X = 1

30 REPEAT

40 BB(X) = X * 2
50 X = X + 1

60 UNTIL X >20

70 PRINT ARR BB, 1

RUN <RETURN>

46

2 81012 14 16 18 20 22 24 26 28 30
32 34 36 3

8 40

3-4

ARRAY MANIPULATION

3.2.4 ZER ARR

FORMAT:

PURPOSE:

EXAMPLE:

ENTER:

TYPE:

DISPLAY:

ZER ARR array name
To set an array to 0.

ZER ARR allows you to place a value of zero (D) in every elementinan
array.

Using the program in the previous section, to set each element in the
array BB to zero:

10 DIM BB(20)

20 X = 1

30 REPEAT

40 BB(X) = X * 2

50 X = X + 1

60 UNTIL X >20

70 PRINT ARR BB, 1

80 ZER ARR BB

90 PRINT: PRINT ARR BB, 1

RUN <RETURN>

24681012 14 16 18 20 22 24 26 28 30
32 34 36 38 40
oI I I I I I O I R O I O)

3.2.5 ADD ARR

FORMAT:

PURPOSE:

EXAMPLE:

ADD ARR result array, array1, array2
To add together two arrays.

The ADD ARR command adds together the contents of two arrays
and places the result in a third, empty, array. The first parameter in
the command is the variable name of the array INTO which the result
of the addition is placed. The second and third parameters are the
variable names of the two arrays which are added.

Arrays are added, and stored element to element, e.g. the first
elementin array1 is added to the firstelementin array2, and stored in
the first element of array3, the sixth element in array1 is added to the
sixth element in array?2, and stored in the sixth element of array3 etc.
The arrays in the addition must have the same dimensions, and
number of elements.

To add the contents of arrays AA and BB, and place the resultin array
CC:

SIMONS' BASIC EXTENSION

ENTER:

INRE:

DISPLAY:

10 DIM AA(20),BB(20),CC(20)

20 ZER ARR CC

30 SET ARR AA,10

40 REPEAT

50 BB(X)=X x 2

60 X=X+1

70 UNTIL X>20

80 ADD ARR CC,AA,BB

90 PRINT "AA="::PRINT ARR AA,1:PRINT
100 PRINT "BB=";:PRINT ARR BB, 1:PRINT
110 PRINT "CC="::PRINT ARR CC,1:PRINT

RUN <RETURN>

AA=1010 101010101010 10 10 10 10 10 10 10 10 10 10 10 10 10
BB=02468 1012 14 16 18 20 22 24 26 28 30 32 34 36 38 40
CC=10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

3.2.6 SUB ARR

FORMAT:

PLURPOSE:

EXAMPLE:

SUB ARR result array, array1, array?2
To subtract one array from another.

SUB ARR subtracts the contents of one array from another and
places the result in a third, empty, array. The first parameter in the
command is the variable name of the array INTO which the result of
the subtraction is placed. The second parameter is the variable name
of the array SUBTRACTED, while the third parameter in the
command is the variable name of the array FROM WHICH the first
array is subtracted.

Arrays are subtracted, and stored element from element, e.g. the first
element in array1 is subtracted from the first element in array2, and
stored in the first element of array3, the fourth element in array1 is
subtracted from the fourth elementin array?2, and stored in the fourth
element of array3 etc. The arrays in the subtraction must have the
same dimensions, and number of elements.

To subtract the contents of arrays AA and BB, and place the resultin
array CC:

3-6

ENTER:

TYPE:

DISPLAY:

ARRAY MANIPULATION

10 DIM AA(20),BB(20),CC(20)

20 ZER ARR CC

30 SET ARR AA,60

40 REPEAT

50 BB(X)=X * 2

60 X=X+1

70 UNTIL X>20

80 SUB ARR CC,AA,BB

90 PRINT "AA=";:PRINT ARR AA,1:PRINT
100 PRINT "BB="::PRINT ARR BB,1:PRINT
110 PRINT "CC=";:PRINT ARR CC,1:PRINT

RUN <RETURN>

AA= 60
BB=02468 1012 14 16 18 20 22 24 26 28 30 32 34 36 38 40
CC= 60 58 56 54 52 50 48 46 44 42 40 38 36 34 32 30 28 26 24 22 20

3.2.7 MUL ARR

FORMAT:

PURPOSE:

EXAMPLE:

ENTER:

MUL ARR result array, array1, array?2
To multiply two arrays together.

The MUL ARR command multiplies the contents of one array by
another and places the result in a third, empty, array. The first
parameter in the command is the variable name of the array INTO
which the result of the multiplication is placed. The second and third
parameters are the variable names of the arrays that are multiplied.

Arrays are multiplied, and stored element by element, e.g. the first
element in array1 is multiplied by the first element in array2, and
stored in the first element of array3, the third element in array1 is
multiplied by the third element in array2, and stored in the third
element of array3 etc. The arrays in the multiplication must have the
same dimensions, and number of elements.

To multiply the contents of arrays AA and BB, and place the result in
array CC:

10 DIM AA(20),BB(20),CC(20)

20 ZER ARR CC

30 SET ARR AA,10

40 REPEAT

50 BB(X)=X+1

60 X=X+1

70 UNTIL X>20

80 MUL ARR CC,AA BB

90 PRINT "AA=";:PRINT ARR AA,1:PRINT
100 PRINT "BB=";:PRINT ARR BB,1:PRINT
110 PRINT “CC=";:PRINT ARR CC,1:PRINT

37

SIMONS’ BASIC EXTENSION

RNRE: RUN <RETURN>

DISPLAY: AA=1010 101010101010 10 10 10 10 10101010 10 10 10 10 10
BB=12345678910111213 141516 17 18 19 20 21
CC=1020 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180

190 200 210
3.2.8 DIV ARR
FORMAT: DIV ARR result array, array1, array?2
PURPOSE: To divide one array by another.

The DIV ARR command divides the contents of one array by another
and places the result in a third, empty, array. The first parameter in
the command is the variable name of the array INTO which the result
of the division is placed. The second parameter is the variable name
of the array DIVIDED, and the third parameter in the command is the
variable name of the array BY WHICH the division is made.

Arrays are divided, and stored element by element, e.g. the first
element in array1 is divided by the first elementin array2, and stored
in the first element of array3, the third elementin array1is divided by
the third element in array2, and stored in the third element of array3
etc. The arrays in the division must have the same dimensions, and
number of elements.

EXAMPLE: To divide the contents of array AA by the contents of array BB, and
place the result in array CC:

ENTER: 10 DIM AA(6),BB(6),CC(6)
20 ZER ARR CC
30 SET ARR AA,720
40 FOR 1=0TO6
50 READ B
60 BB(1)=B
70 NEXT |
80 DIV ARR CC,AA,BB
90 PRINT "AA="::PRINT ARR AA,1:PRINT
100 PRINT "BB=";:PRINT ARR BB, 1:PRINT
110 PRINT "CC=";:PRINT ARR CC,1:PRINT
1000 DATA 1,2,4,6,8,10,12

Y PE: RUN <RETURN>
DISPLAY: AA=T720 720 720 720 720 720 720

BB=1246810 12
CC= 720 360 180 120 90 72 60

ARRAY MANIPULATION

3.2.9 ADD ALL

FORMAT:

PURPOSE:

EXAMPLE:

ENTER:

IRYRE:

DISPLAY:

ADD ALL array name, value
To add a value to every element in an array

The ADD ALL command adds a specified number to every element in
a defined array. The first parameter in the command is the array to
which the value is added. The second parameter is the value you wish
to add. This may be an actual number or the result of a computation.

To add the value 20 to every element of the array AA:

10 DIM AA(20)

20 FOR 1=0TO20

30 AA(I)=I

40 NEXT |

50 PRINT "AA=";:PRINT ARR AA,1:PRINT
60 ADD ALL AA,20

70 PRINT "AA=";:PRINT ARR AA,1:PRINT

RUN <RETURN>

AA=P123456789
25

11213141516 17 18 19 20
AA= 20 21 22 23 24 9

10 1
26 27 28 29 3D 31 32 33 34 35 36 37 38 39 49

3.2.10 SUB ALL

FORMAT:

PUBRPOSE:

EXAMPLE:

ENTER:

TYPRE:

DISPLAY:

SUB ALL array name, value
To subtract a number from every element in an array

SUB ALL subtracts a specified value from every element in a defined
array. The first parameter in the command is the array which is
subtracted from. The second command parameter is the value
Subtracted.

To subtract 20 from every element of array AA:

10 DIM ARR AA(20)

20 FOR 1=0T020

30 AA(1)=1+20

40 NEXT |

50 PRINT "AA=";:PRINT ARR AA,1:PRINT
60 SUB ALL AA,20

70 PRINT "AA=";:PRINT ARR AA,1:PRINT

RUN <RETURN>

AA= 20 21 22 23 24

25 27 28 29 30 31 32 33 34 35 36 37 38 39 40
AA=0123456789

26
10111213 141516 17 18 19 20

SIMONS’ BASIC EXTENSION

3.2.11 MUL ALL

FORMAT:

PURPOSE:

EXAMPLE:

ENTER:

YRE:

DISPLAY:

MUL ALL array name, value
To multiply every element in an array by a number.

The MUL ALL command multiplies every element in a defined array
by a specified number. The first parameter in the command is the
array which is multiplied. The second parameter is the multiplication
factor.

To multiply every element in array AA by 10:

10 DIM AA(20)

20 FOR 1=0T0O20

30 AA(I)=I

40 NEXT |

50 PRINT “AA=";:PRINT ARR AA,1:PRINT
60 MUL ALL AA,10

70 PRINT "AA=";:PRINT ARR AA,1:PRINT

RUN <RETURN>
AA=01234567891011121314151617 18 19 20

AA=01020 3040506070 8090 100 110 120 130 140 150 160 170 180
190 200

3.2.12 DIV ALL

FORMAT:

PURPOSE:

EXAMPLE:

ENTER:

INPES

DISPLAY:

DIV ALL array name, value
To divide every element in an array by a number

DIV ALL divides every element in a defined array by a specified
number. The first parameter in the command is the array that is
divided, while the second command parameter is the division factor.

To divide every element in array AA by 10:

10 DIM AA(20)

20 FOR 1=0T020

30 AA()=1%10

40 NEXT |

50 PRINT "AA=";:PRINT ARR AA,1:PRINT
60 DIV ALL AA,10

70 PRINT "AA=";:PRINT ARR AA,1:PRINT

RUN <RETURN>
AA=010203040 506070 8090 100 110120130 140 150 160 170 180

190 200
AA=012345678910111213 14151617 18 19 20

ARRAY MANIPULATION

3.2.13 COPY ARR

FORMAT:

PURPOSE:

EXAMPLE:

ENTER:

TYRE:

DISPLAY:

COPY ARR array1, array2
To copy one array to another.

The COPY ARR command duplicates the contents of one array into
another, empty array. The first parameter in the command is the
variable name of the array into which the information is copied. The
second command parameter is the variable name of the array whose
contents are copied.

To copy the contents of array AA into array BB:

10 DIM ARR AA(20),BB(20)

20 ZER ARR BB

30 FOR 1=0T020

40 AA(1)=1%10

50 NEXT |

60 PRINT "AA=";:PRINT ARR AA,1:PRINT
70 PRINT "BB=";:PRINT ARR BB,1:PRINT
80 COPY ARR AA,BB

90 PRINT "AA="::PRINT ARR AA 1:PRINT
100 PRINT “BB=";:PRINT ARR BB,1:PRINT

RUN <RETURN>

AA=D10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180
190 200

BB=000000000000000000000

AA=01020 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180
190 200

BB=0 1020 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180
190 200

3.2.14 INPUT ARR

FORMAT:

PURPOSE:

EXAMPLE:

INPUT ARR array name

To fill an array from the keyboard.

INPUT ARR allows an array to be filled directly from the keyboard.
The parameter ‘array name’ is the variable name of the array to be
filled. Once the array has been filled, program execution continues.

To fill the array AA from the keyboard, and then display it:

SIMONS’ BASIC EXTENSION

ENTER:

N RE:

RESULT:

10 DIM AA(20)

20 PRINT "ENTER 21 NUMBERS"

30 INPUT ARR AA

40 PRINT "AA=";:PRINT ARR AA,1:PRINT

RUN <RETURN>

The numbers that you typed on the keyboard, are now elements of
the array AA.

3.2.15 READ ARR

FORMAT:

PURPOSE:

EXAMPLE:

ENTER:

N PE:

DISPLAY:

READ ARR array name
To read data into an array.

The READ ARR command reads data from DATA statements into an
array until the array is filled. The command parameter is the variable
name of the array into which the data is stored.

To set all the elements in array AA to 720, read the contents of array
BB from a DATA statement, and divide array AA by array BB:

10 DIM AA(6),BB(6),CC(6)

20 ZER ARR CC

30 SET ARR AA,720

40 READ ARR BB

50 DIV ARR CC,AA,BB

60 PRINT "AA=";:PRINT ARR AA,1:PRINT
70 PRINT "BB=";:PRINT ARR BB,1:PRINT
80 PRINT "CC=";:PRINT ARR CC,1:PRINT
1000 DATA 1,2,4,6,8,10,12

RUN <RETURN>
AA= 720 720 720 720 720 720 720

BB=124681012
CC= 720 360 180 120 90 72 60

3.2.16 SCRATCH

FORMAT:

PURPOSE:

SCRATCH array name
To delete an array from memory.

The SCRATCH command removes an array from memory. It differs
from the ZER ARR command in that the scratched array name can no
longer be used as a parameter in an array manipulation command.
The parameter ‘array name’ is the variable name of the array to be
SCRATCHed.

312

EXAMPLE:

ENTER:

TYPE:

DISPLAY:

3.2.17 SUM
FORMAT:
or:

PURPOSE:

EXAMPLE:

ENTER:

TYPE:

DISPLAY:

ARRAY MANIPULATION

NOTE
If you wish to use a variable name of an array
that has been SCRATCHed, always remember
to re-DIMension the array.

To DIMension arrays AA and BB, and SCRATCH array AA:

10 DIM AA(20,20)
20 PRINT "AA DIMENSIONED";FRE(D)
30 DIM BB(20,20)

40 PRINT "BB DIMENSIONED":FRE(0)
50 SCRATCH AA

60 PRINT "AA SCRATCHED ":FRE(0)

RUN <RETURN>
AA DIMENSIONED 25948

BB DIMENSIONED 23734
AA SCRATCHED 25948

A=SUM(array name)

PRINT SUM(array name)

To add the contents of an array.

The SUM function gives the result of adding together all the elements
in an array. The parameter enclosed in brackets is the variable name
of the array whose elements you wish to add.

To set all the elements of array AA to 10, and add them together:
10 DIM AA(20)

20 SET ARR AA 10

30 A=SUM(AA)

40 PRINT "THE TOTAL SUM OF AA=";A

RUN <RETURN>

THE TOTAL SUM OF AA= 210

SIMONS’' BASIC EXTENSION

3.2.18 ELEMENTS

FORMAT:
or:

PURPOSE:

EXAMPLE:

ENTER:

TYRE:

DISPLAY:

3.2.19 MIN
FORMAT:
or:

PURPOSE:

EXAMPLE:

ENTER:

variable=ELEMENTS(array name)
PRINT ELEMENTS(array name)
To determine the number of elements in an array.

The ELEMENTS function returns the number of elements in a
specified array. The parameter inside brackets is the variable name of
the array whose contents you wish to examine.

To determine the number of elements in array AA:

10 DIM AA(20)

20 SET ARR AA,10

30 A=SUM(AA)

40 E=ELEMENTS(AA)

50 PRINT "THE TOTAL SUM OF AA=";A

60 PRINT "THE TOTAL NUMBER OF ELEMENTS IN AA=";E

RUN <RETURN>

THE TOTAL SUM OF AA= 210
THE TOTAL NUMBER OF ELEMENTS IN AA= 21

A=MIN(array name)
PRINT MIN(array name)
To return the lowest number in an array.

The MIN function returns the value of the lowest element in a
specified array. The parameter enclosed in brackets is the variable
name of the array whose minimum element you wish to determine.

To determine the minimum value in array AA:

10 DIM AA(20)

20 READ ARR AA

30 PRINT "AA="::PRINT ARR AA,1:PRINT
40 MN=MIN(AA)

50 PRINT "MINIMUM VALUE IN AA=";MN
1000 DATA -40,-31,22,-29,23,7,-50

1010 DATA -17,-28,45,-7,47,-44,-20

1020 DATA 40,17,27,18,7,13,-40

TYPE:

DISPLAY:

3.2.20 MAX
FORMAT:
or:

PURPOSE:

EXAMPLE:

ENTER:

TYPE:

DISPLAY:

ARRAY MANIPULATION

RUN <RETURN>>

AA=-40-3122-29237-50-17-2845-7 47 -44-2040 1727187 13-40
MINIMUM VALUE IN AA=-50

variable = MAX(array name)
PRINT MAX(array name)
To return the highest number in an array.

The MAX function returns the value of the largest element in a
specified array. The parameter enclosed in brackets is the variable
name of the array whose maximum element you wish to determine.

To determine the maximum value in array AA:

10 DIM AA(20)

20 READ ARR AA

30 PRINT "AA=";:PRINT ARR AA,1:PRINT
40 MX=MAX(AA)

50 PRINT "MAXIMUM VALUE IN AA=":MX
1000 DATA -40,-31,22,-29,23,7,-50

1010 DATA -17,-28,45,-7,47,-44,-20

1020 DATA 40,17,27,18,7,13,-40

RUN <RETURN>

AA=-40-3122-29237-50-17 -2845-7 47 -44 -20 401727187 13-40
MAXIMUM VALUE IN AA= 47

SIMONS’ BASIC EXTENSION

3.3 STRING ARRAY MANIPULATION

3.3.1 SORT
FORMAT:

PURPOSE:

EXAMPLE:

ENTER:

Y PE:

SORT array$,dflag,start,end
To sort a single dimension string array.

The SORT command sorts any single dimension string containing
alpha and/or numeric characters into ascending or descending
order. The first parameter, array$, is the name of the string array. The
next parameter, dflag, specifies whether the array is to be sorted into
ascending, or descending order. A 1" in this position denotes
ascending order,and a"0" in this position denotes descending order.
The last two parameters, start and end, dictate which part of the
string element is sorted. Either the whole of each string element, or
just a part. For example, SORT A$,0,3,255 sorts the string array A%
into descending order. But only from the third character of each
element onwards. This is especially useful should youwanttosortan
array containing names, but wish to ignore the initials. For more
information on string arrays see Appendix C of your COMMODORE
64 USER'S MANUAL, and pages 4 - 9 of the COMMODORE 64
PROGRAMMER’'S REFERENCE GUIDE.

To read names from a DATA statementinto the array A$, and sort that
array into descending order:

10 DIM A$(5)

20 PRINT "UNSORTED NAMES"
30 PRINT " i
40 FOR 1=0TO5

50 READ AS$(l)

60 PRINT A$(1)

70 NEXT |

80 SORT A$,0,3,255

90 PRINT

100 PRINT "SORTED NAMES"
110 PRINT " .
120 FOR 1=0TO5

130 PRINT A$(l)

140 NEXT |

1900 DATA "MR JONES”,”"MR SMITH","MR BLOGGS"
1910 DATA "MR BROWN",”"MR WHITE","MR BLACK"

RUN <RETURN>

3-16

DISPLAY:

UNSORTED NAMES

MR JONES
MR SMITH
MR BLOGGS
MR BROWN
MR WHITE
MR BLACK

SORTED NAMES

MR WHITE
MR SMITH
MR JONES
MR BROWN
MR BLOGGS
MR BLACK

ARRAY MANIPULATION

NUMERIC AIDS

SECTION FOUR
NUMERIC AIDS

4.1 INTRODUCTION

Section Four contains additional commands to help you when manipulating numeric
data. GRAD and DEG are two additional trigonometrical functions. The first converts
a number expressed in gradians into radians, while the second converts a number
expressed in degrees into radians. Also included in this section are commands to
convert decimal numbers into their binary or hexadecimal equivalent.

4.2 ADDITIONAL TRIGONOMETRICAL FUNCTIONS
4.21 GRAD

FORMAT: variable=GRAD (number)

PURPOSE: To convert gradians into rads.

The GRAD function converts a value expressed in gradiansinto rads.
It is used like any normal mathematical function.

EXAMPLE: To use the GRAD function to plot a sine wave:
ENTER: 10 HIRES 11,15

20 FOR 1=0 TO GRAD(400) STEP GRAD(400)/64
30 Y=SIN(l)*50+100

40 X=1%50
50 PLOT X,Y,1
60 NEXT |
70 PAUSE 10
TYPE: RUN <RETURN>
RESULT: A sine wave is plotted on the high-resolution screen.
4.2.2 DEG
FORMAT: variable=DEG (number)
PURPOSE: To convert degrees into rads.

The DEG function converts a value expressed in degrees into rads. It
is used like any normal mathematical function.

4-1

SIMONS’ BASIC EXTENSION

EXAMPLE:

ENTER:

TRYRE:

RESULT:

To use the DEG function to plot a sine wave:

19 HIRES 11,15

20 FOR 1=p TO DEG(360) STEP DEG(360)/64
30 Y=SIN(I)x50+100

40 X=1%*50

50 PLOT X,Y,1

60 NEXT |

70 PAUSE 10

RUN <RETURN>

A sine wave is plotted on the high-resolution screen.

4.3 NUMERIC CONVERSION

4.3.1 BINS - DECIMAL/HEXADECIMAL TO BINARY CONVERSION

FORMAT:

PURPOSE:

EXAMPLE:
COMMAND:

DISPLAY:

BIN$(n)
To convert from decimal, or hexadecimal into binary.

The BIN$ command converts a decimal, or hexadecimal number into
its binary equivalent.

If a decimal number outside the range 0-255, or a hexadecimal
number outside the range $0000-$00FF is used as theargumentin the
command, the message:

? ILLEGAL QUANTITY ERROR

is displayed.

To convert the decimal number 135 into its binary equivalent:

PRINT BIN$(135) <RETURN>

10000111

4.3.2 HEXS$ - DECIMAL/BINARY TO HEXADECIMAL CONVERSION

FORMAT:

PURPOSE:

HEX$(n)
To convert from decimal, or binary into hexadecimal.

The HEX$ command converts a decimal, or binary number into its
hexadecimal equivalent.

EXAMPLE:

COMMAND:

DISPLAY:

NUMERIC AIDS

If a decimal number outside the range 0-65535 is used as the
argument in the command, the message:

? ILLEGAL QUANTITY ERROR

is displayed.

Only 8-bit binary numbers in the range %00000000-%11111111 may
be used. If a negative binary number is used as the argument in the
command, the message:

? ILLEGAL QUANTITY ERROR

is displayed.

To convert the decimal number 220 into its hexadecimal equivalent:

PRINT HEX$(220) <RETURN>

POpDC

4.4 SPECIAL CALCULATIONS

4.41 CALCX
FORMAT:
Ol

PURPOSE:

EXAMPLE:

A=CALCX(x,y,angle,xr,yr)
PRINT CALCX(x,y,angle,xr,yr)

To calculate the x coordinate of a point on the circumference of a
circle.

The CALCX function returns the x coordinate of a point on the
circumference of a circle. Itis essentially ANGL (see section 6.5.13 of
your SIMONS’ BASIC MANUAL), but without the y coordinate, and
instead of drawing a line, CALCX returns the point. The first two
parameters, x and y, are the centre coordinates of the imaginary
circle. The next parameter, angle, is the angle of the point to the
perpendicular, and xr and yr are the x and y radii of the circle.

To use the CALCX function to draw a pattern on the high-resolution
screen:

4-3

SIMONS' BASIC EXTENSION

ENTER: 10 HIRES 1,0
20 FOR R=10 TO 100
30 FOR A=p TO 180 STEP 20
40 X=CALCX(160,100,A+R,R,R)
50 Y=CALCY(160,100,A+R,R,R)

60 PLOT X,Y,1
70 NEXT
80 NEXT

IRPE: RUN <RETURN>

RESULT: A pattern is drawn on the high-resolution screen.

4.4.2 CALCY

FORMAT: A=CALCY(x,y,angle,xr,yr)

or: PRINT CALCY(x,y,angle,xr,yr)

RPURPR@SIE: To calculate the y coordinate of a point on the circumference of a
circle.
The CALCY function returns the y coordinate of a point on the
circumference of a circle. ltisessentially ANGL (see section 6.5.13 of
your SIMONS’ BASIC MANUAL), but without the x coordinate, and
instead of drawing a line, CALCY returns the point. The first two
parameters, x and y, are the centre coordinates of the imaginary
circle. The next parameter, angle, is the angle of the point to the
perpendicular, and xr and yr are the x and y radii of the circle.

EXAMPLE: To use the CALCY function to draw a pattern on the high-resolution
screen:

ENTER: 10 HIRES 1,0
20 FOR R=190 TO 109
30 FOR A=p TO 180 STEP 20
40 X=CALCX(160,100,A+R,R,R)
50 Y=CALCY (160,100,A+R,R,R)
60 PLOT X,Y,1
70 NEXT
80 NEXT

MYRPE: RUN <RETURN>

RESULT: A pattern is drawn on the high-resolution screen.

4-4

NUMERIC AIDS

WARNING

IN CERTAIN SITUATIONS CALCX AND
CALCY MUST NOT BE INCORPORATED IN
HIGH-RESOLUTION COMMANDS, IF YOU
RECEIVE AN ERROR MESSAGE, ALTER
YOUR PROGRAM SO THAT THE RESULTS
OF THE CALCX AND CALCY CALCULATIONS
ARE STORED IN VARIABLES, AND USE THE
VARIABLES IN THE HIGH-RESOLUTION
COMMAND.

4.5 EVALUATING A STRING AS A BASIC EXPRESSION

4.5.1 EVAL

FORMAT:

PURPOSE:

EXAMPLE:

ENTER:

EVAL str$
To evaluate a string as a BASIC expression.

EVAL evaluates a string as a BASIC expression. The single
parameter, str$, is any string that is stored in the 64’s memory. This
command is extremely useful for any program that requires data
entry of expressions that need to be calculated.

NOTE
Temporary strings will not work with EVAL, i.e.:

10 AS="Y=X*10:BACK"
20 EVAL AS
30 PRINT Y

A$ in this example is a temporary string, and
will not be evaluated. If you are uncertain, use a
string add on any string that needs to be
evaluated, i.e.:

10 A$="Y="+"X*10:BACK"
20 EVAL A$
30 PRINT Y

To enter the “X” part of the equation, evaluate the whole equation,
and give the answer:

10 A$="Y="+"X*x10:BACK"

20 PRINT "Y=X%x10"

30 INPUT "ENTER NUMBER FOR X'";X
40 EVAL AS

50 PRINT "Y=";Y

60 GOTO 30

4-5

SIMONS' BASIC EXTENSION

R E: RUN <RETURN>

RES WL When you enter the “X” part of the equation and press RETURN, A$ is
evaluated and the answer is put into variable Y.

4.5.2 BACK

FORMAT: str$:BACK

PURPGSE: To ensure that program execution is correctly resumed after EVAL.
BACK must always be used in conjunction with EVAL. Itis added to
the end of the string, and ensures that program execution is correctly
resumed after the string has been evaluated. BACK is always
preceded by a colon.

EXAMPLE: To input a string, evaluate it, and give the answer:

ENTER: 10 INPUT A$
20 EVAL "A="+A$+":BACK"
30 PRINT "ANSWER=";A
49 GOTO 10

N RE: RUN <RETURN>

RESULT: When you enter an equation and press RETURN, A$ is evaluated and

the answer is put into variable A.

4-6

MEMORY MANIPULATION COMMANDS

SECTION FIVE
MEMORY MANIPULATION COMMANDS

5.1 INTRODUCTION

In Section Five, the commands DEEK and DOKE are explained. Thefirstallows you to
read a 16 bit number in memory while the second enables you to assign a 16 bit
number to two consecutive bytes of memory. Also included in this section are the
commands HIMEM and LOMEM which allow the top and bottom of BASIC memory to
be read or changed.

5.2 DOKE
FORMAT: DOKE a,b
PUIRPOSIE To assign a 16 bit value to memory.

The DOKE command enables you to place a 16 bit value in a specific
memory location. This saves you having to first convert the number
into low byte/high byte format and then using two POKEs.

EXAMPLE: To use the DOKE command to change the frequency control
registers of the SID chip:

ENITER: 10 SID=54272
20 VOL 15
30 ENVELOPE 1,0,8,8,8
40 WAVE 1,00010001
50 FOR I1=0 TO 65535 STEP 10
60 DOKE SID,I
79 NEXT |

TYPE: RUN <<RETURN -~

RESULT: A low to high glide is produced.

Sl

SIMONS' BASIC EXTENSION

5.3 DEEK

FORMAT:

PURPOSE:

EXAMPLE:

ENTER:

T RIE:

DISPLAY:

5.4 HIMEM

FORMAT:

QF:

PURPOSE:

EXAMPLE:

IR EE

DISPLEAY:

DEEK a,b

To read two consecutive bytes of memory.

DEEK is the converse of the DOKE command, i.e. itallows you to read
two consecutive bytes of memory. The value returned is
automatically converted into decimal form.

To use the DEEK command to determine the end of program address:
10 PRINT "END OF PROGRAM ADDRESS IS:”;DEEK(45)

RUN <RETURN>

END OF PROGRAM ADDRESS IS: 2092

variable=HIMEM
HIMEM (address)
To read or set the top of BASIC memory.

The HIMEM command allows you to read, or re-set the top of BASIC
memory pointer.

To read the top of BASIC memory:
PRINT "THE TOP OF MEMORY IS AT";HIMEM <<RETURN>

THE TOP OF MEMORY IS AT 30336

S22

MEMORY MANIPULATION COMMANDS

5.5 LOMEM

FORMAT:

QI

variable=LOMEM

LOMEM (address)

PURPOSE: To read or set the bottom of BASIC memory.
The LOMEM command allows you to read, or re-set the bottom of
BASIC memory pointer.
EXAMPLE: To read the bottom of BASIC memory:
TYPRE: PRINT "THE BOTTOM OF MEMORY IS AT":LOMEM<RETURN >
DISPLAY: THE BOTTOM OF BASIC MEMORY IS AT 2049
5.6 SCREEN
FORMAT: A=SCREEN
or: PRINT SCREEN
PURPOSE: To determine the current position of the screen in memory.
SCREEN is a constant that is always equal to the current position of
the screen in memory.
EXAMPLE: To display the letters of the alphabet on the top of the screen:
ENTER: 10 COL=55296-SCREEN
20 FOR I=FATOA+25
30 POKE SCREEN+I,I+1
40 POKE SCREEN+I+COL,11
50 NEXT |
Y PE: RUN <RETURN>
DISPLAY: ABCDEFGHIJKLMNOPQRSTUVWXYZ

5-3

HIGH RESOLUTION AND MULTI-COLOUR GRAPHICS

SECTION SIX
HIGH-RESOLUTION AND MULTI-COLOUR
GRAPHICS

6.1 INTRODUCTION

This section contains additional commands for use on high-resolution and/or multi-
colour graphics screen. These commands allow you to draw grids for producing
graphs and histograms, display characters in a specified size at a defined slant,
store/load graphics screens and draw horizontal and vertical lines.

The GRID command plots a grid on a graphics screen while the TICK command
allows you to draw calibrations on the x and y axes of the grid. The HSAVE and
HLOAD commands enable you to respectively store and recall graphics screens. The
LABEL command enables you to place characters on a graphics screen in aspecified
size at a defined degree of slant. Also included in this section are the VLIN and HLIN
commands which permit you to draw vertical and horizontal lines respectively on a
graphics screen.

6.2 HIGH-RESOLUTION AND MULTI-COLOUR
GRAPHICS COMMANDS

6.2.1 GRID

FORMAT: GRID x,y,tx,ty,n,n1,plot type

PURPOSE: To draw a grid.
The GRID command allows you to draw a GRID on a high-resolution
graphics screen. The first two parameters, x and y, refer to the
location of the intersection of the x and y axes of the grid, i.e. the
bottom left-hand corner of the grid. The parameters tx and ty
indicate, respectively, the distance between calibrations on the x and
y axes. The next two parameters, nx and ny, specify the number of
calibrations required on first the x, then the y axes. Plot type is as
described in in Section 6.4 of the SIMONS’ BASIC manual.
Note that, if the calibration marks go off the screen, the message:

BAD MODE

is displayed and you must amend your code accordingly.

6-1

SIMONS’ BASIC EXTENSION

EXAMPLE:

ENIMER:

Y RE:

RESULT:

6.2.2 TICK
FORMAT:

PURPOSE:

EXAMPLE:

ENTER:

FYPE:

RESULT:

To draw a large grid, with a smaller grid inside it:
10 HIRES 15,0

20 GRID 10,190,60,60,4,3,1

30 GRID 70,130,5,5,12,12,1

49 PAUSE 5

RUN <RETURN>>

A large grid, with a smaller grid inside one of its squares is drawn on
the high-resolution screen.

TICK x,y,tx,ty,n,n1,plot type

To draw the axes of a grid.

The TICK command differs from GRID (see the previous section) in
that it only draws and calibrates the x and y axes of a grid. This allows
you to use the grid to produce graphs, histograms etc. The
parameters are the same as those used in the GRID command.
Note that, if the calibration marks go off the screen, the message:
BAD MODE

is displayed and you must amend your code accordingly.

To “tick” the x and y axes of the large grid:

10 HIRES 15,0

20 GRID 10,190,60,60,4,3,1

30 GRID 70,130,5,5,12,12,1

40 TICK 10,190,5,5,48,36, 1

50 PAUSE 5

RUN <RETURN>

The x and y axes of the large grid are “ticked”.

6-2

6.2.3 HSAVE

FORMAT:

or:

PURPOSE:

EXAMPLE:

ENTER:

or:
TYRPE

RESULT:

HIGH RESOLUTION AND MULTI-COLOUR GRAPHICS

HSAVE 2,8,2,"drive number:program name,S,W”
HSAVE 1,1,1,"program name”
To save a graphics screen to disk or tape.

The HSAVE command stores a graphics screen on diskette or
cassette. The first figure following the command is a logical file
number. This tells the COMMODORE 64 to open achannel to the disk
drive or cassette unit. The second figure specifies the storage device
you wish to use. This number is 1 for cassette or 8 for diskette. The
third figure is a secondary address. This is a special instruction
telling the computer how to store the information. For example, a
secondary address of 1 for cassette, instructs the COMMODORE 64
that a file is to be written and that an end-of-file marker is to be placed
at the end of the tape when the file is closed. When using HSAVE, the
secondary address must be 1 for cassette, and any number in the
range 2-14 for disk. The ‘name’ is the title you wish to give to the
screen data. This name must be unique for each screen you store.
You may then use this name in the HLOAD command (see the
following section) to recall and display the stored data. The
parameter S indicates that the file being accessed is sequential. W
instructs the COMMODORE 64 that this file is to be written to rather
than read from. When stored, each screen occupies approximately 41
blocks. Note that the parameters are separated by commas and
quotation marks are placed around name and S,W.

To draw a picture on the high-resolution screen, and saveiton disk or
cassette:

10 HIRES 15,0

20 FOR R=10TO90 STEP 5

3p CIRCLE 160,100,R,100-R,1

40 NEXT

50 PAUSE 5

60 HSAVE 2,8,2,"HIRES SAVE,S,W":REM x*x FOR DISK ***

60 HSAVE 1,1,1,"HIRES SAVE":REM *x** FOR CASSETTE ***
RUN <RETURN>

A design is drawn on the high-resolution screen, and is saved on disk
or cassette after a pause of five seconds.

6-3

SIMONS’ BASIC EXTENSION

6.2.4 HLOAD
FORMAT:
or:

PURPOSE:

EXAMPLE:

ENTER:

or:

Y RE:

RESULT:

HLOAD 2,8,2,"drive number:program name”
HLOAD 1,1,0,"program name"”

To recall and re-display a previously saved graphics screen from
diskette or cassette.

The HLOAD command allows you to recall and display a graphics
screen that has been stored with the HSAVE command (see the
previous section). The first figure following the command is a logical
file number. This tells the COMMODORE 64 to open a data channel
to the disk drive or cassette unit. The second figure after the
command specifies the device on which the data has been stored.
This number is 1 for cassette or 8 for diskette. The third figure is a
secondary address. When using HLOAD, the secondary address
must be @ for cassette, and any number in the range 2-14 fordisk. The
title you assigned to the screen data is the final parameter and must
be enclosed in quotation marks.

NOTE
Before you recall a graphics screen, you must
ensure that the screen is in the same graphics
mode as it was when the screen was stored. For
example, before using HLOAD, enter :
HIRES 0,1:MULTI 2,3,4
For recalling a multicolour screen.
HIRES 0,1

For recalling a high resolution screen.

To recall a previously saved high-resolution screen from disk or
cassette:

10 HIRES 15,0

20 HLOAD 2,8,2,"HIRES SAVE,S,R":REM x** FOR DISK x4
30 PAUSE 5

20 HLOAD 1,1,0,"HIRES SAVE":REM *x* FOR CASSETTE *x
RUN <RETURN>

Your high-resolution screen is recalled from disk or cassette.

6-4

6.2.5 LABEL
FORMAT:

PURPOSE:

EXAMPLE:

ENTER:

Y RE:

BRESULT:

HIGH RESOLUTION AND MULTI-COLOUR GRAPHICS

LABEL x,y,"text” ,plot type,xe,ye,sl,x1,y1,r
To print a character string on a graphics screen.

LABEL allows you to print character stringsona graphicsscreen ata
defined size, slant and rotation. The parameters X and y specify the
screen coordinates of the first letter of the string. The next parameter
is the string itself. Plot type is as described in Section 6.4 of the
SIMONS' BASIC manual. The parameters xe and ye specify the
expansion factor of each character in the string in the horizontal and
vertical directions respectively. Normal expansion is “17. Any
increase in this figure causes a corresponding increase insize,e.g.a
value of “3” for the x expansion would cause the characters to be
displayed at three times their normal width. Note that you may not
use an expansion factor greater than “30”. The parameter sl refers to
the slant of each character to the vertical. A value of “1” is used to
display characters vertically. “@" displays the characters slanted to
the left, while “2” causes the characters to be slanted to theright. The
final two parameters in the LABEL command indicate the offsets in
the horizontal and vertical directions respectively between each
character in the string.

To display text of various sizes, slants, and angles of rotation on the
high-resolution screen:

10 HIRES 15,0

o0 LABEL 10,10,"<CTRL B><SHIFT A>LL THESE
LETTERS",1,2,4,1,12,0,0

30 LABEL 250.0,"<CTRL B>ARE PRODUCED",1,4,2,0,0,16,1

40 LABEL 20,160,"<CTRL B>USING",1,4,2,0,30,-5,0

50 LABEL 10,80,"LABEL",1,4,4,1,30,5,0

60 PAUSE 5

RUN <RETURN>
Different parts of the message: “All these letters are produced using

LABEL” are displayed in different sizes, slants, and angles of rotation
on the high-resolution screen.

6-5

SIMONS’ BASIC EXTENSION

6.2.6 DRAW TO

FORMAT:

or:

PURPOSE:

EXAMPLE:

ENTER:

TYPE:

RESULT:

DRAW TO x,y,plot type
DRAW TO,x,y,plot type TO X1,y1 TO x2,y2 (etc.)
To draw a line from the last plotted point.

The DRAW TO command draws a line from the last plotted point to
the position specified. The parameters x and y specify the horizontal
and vertical screen coordinates of the point to be drawn to. Plot type
is as described in Section 6.4 of your SIMONS’BASIC MANUAL. The
DRAW TO command may also be used to draw a series of lines by
adding extra TOs. When using this second type of format, plot type
need only be specified once.

To draw a design on the high-resolution screen using the DRAW TO
command:

10 HIRES 15,0:PLOT 0,0,0
20 X1=0:X2=320:Y1=0:Y2=200
30 REPEAT

40 DRAW TO X2,Y1,1

50 DRAW TO X2,Y2,1

60 DRAW TO X1,Y2,1

70 DRAW TO X1,Y1+5,1
80 X1=X1+5

90 X2=X2-5

100 Y1=Y1+5

110 Y2=Y2-5

120 UNTIL Y1200

130 PAUSE 5

RUN <RETURN>

A design made up of decreasing rectangles is drawn on the high-
resolution screen.

6-6

6.2.7 VLIN
FORMAT:

PURPOSE:

EXAMPLE:

ENTER:

A=

RESULT:

6.2.8 HLIN
FORMAT:

PURP@SE:

HIGH RESOLUTION AND MULTI-COLOUR GRAPHICS

VLIN x,y1,y2,plot type
To draw a vertical line.

VLIN draws a vertical line from y1to y2 in the xth column across the
screen. The advantage of using VLIN over LINE when drawing
vertical lines, is that VLIN is much faster, and needs one less
parameter. Plot type is as described in Section 6.4 of your SIMONS’
BASIC MANUAL.

NOTE
The parameter y1 must be less than y2. If y1 is
greater than y2, then only one point is plotted,
that at y1.

To draw a design on the high-resolution screen using the VLIN and
HLIN commands:

10 HIRES 15,0:PLOT 0,0,0
20 X1=2:X2=318:Y1=2:Y2=198
30 REPEAT
40 HLIN Y1,X1
50 VLIN X2,Y1
60 HLIN Y2,X1
79 VLIN X1,Y1
80 X1=X1+8
90 X2=X2-8
100 Y1=Y1+8
N0 Y2=Y2-8
120 UNTIL Y1160
130 PAUSE 5

X2
R
W2
Y

1
1
1
2,1

RUN <<RETURN >

A design consisting of decreasing rectangles is displayed on the
high-resolution screen.

HLIN y,x1,x2,plot type

To draw a horizontal line.

HLIN draws a horizontal line from x1to x2 in yth row down the screen.
The advantage of using HLIN over LINE when drawing horizontal

lines, is that HLIN is much faster, and needs one less parameter. Plot
type is as described in Section 6.4 of your SIMONS' BASIC MANUAL.

6-7

SIMONS' BASIC EXTENSION

EXAMPLE:

ENMNERS

YRE:

RESULT:

NOTE
The parameter x1 must be less than x2. If x1 is
greater than x2, then only one point is plotted,
that at x1.

To draw a design on the high-resolution screen using the VLIN and
HLIN commands:

10 HIRES 15,0:PLOT 0,0,0
20 X1=2:X2=318:Y1=2:¥2=198
30 REPEAT

40 HLIN Y1,X1,X2,1

50 VLIN X2,Y1,Y2,1

60 HLIN Y2,X1,X2,1

70 VLIN X1,Y1,Y2,1

80 X1=X1+8

90 X2=X2-8

100 Y1=Y1+8

110 Y2=Y2-8

120 UNTIL Y1>160

130 PAUSE 5

RUN <RETURN>>

A design consisting of decreasing rectangles is displayed on the
high-resolution screen.

6.3 SCALING FUNCTIONS

6.3.1 SCALE
FORMAT:

PURPOSE:

EXAMPLE:

SCALE hx,hy
To set up a scaling factor.

The SCALE command sets up ascaling factor for the high-resolution
screen. The parameter hx is the largest number that the x coordinate
can be, and the parameter hy is the largest number that the vy
coordinate can be. These numbers can be as large or as little as you
wish, within the standard floating point limits (see pages 26 and 27 of
your COMMODORE 64 USER’S GUIDE).

To set up a scaling factor, and draw a sine wave on the high-
resolution screen using that scaling factor:

6-8

HIGH RESOLUTION AND MULTI-COLOUR GRAPHICS

ENTER: 19 HIRES 15,0
20 SCALE 1000,1000
30 C=500
40 FOR 1=0TO1000
50 P=SIN(I/160)*400+C
60 X=SCX(l)
70 Y=SCY(P)
80 PLOT X,Y,1
90 NEXT |

IR ES RUN <RETURN>

RESULT: A sine wave is drawn on the high-resolution screen.
6.3.2 SCX

FORMAT: A=SCX(expression)

PURPOSE: To return a scaled value of X.

The SCX function returns a scaled value of X. It is used like any
normal mathematical operator.

EXAMPLE: To set up a scaling factor, and draw a sine wave on the high-
resolution screen using that scaling factor:

ENTER: 10 HIRES 15,0
20 SCALE 1000,1000
30 C=500
40 FOR I=0TO1000
50 P=SIN(1/160)*400+C
60 X=SCX(l)
70 Y=SCY(P)
80 PLOT X,Y,1
90 NEXT |

Y RE: RUN <RETURN>

RESULT: A sine wave is drawn on the high-resolution screen.

69

SIMONS' BASIC EXTENSION

6.3.3 SCY
FORMAT: A=SCY (expression)
PURPOSE: To return a scaled value of Y.

The SCY function returns a scaled value of Y. It is used like any
normal mathematical operator.

EXAMPLE: To set up a scaling factor, and draw a sine wave on the high-
resolution screen using that scaling factor:

ENTER: 10 HIRES 15,0
20 SCALE 1000,1000
30 C=500
49 FOR [=0TO1000
50 P=SIN(1/160)*400+C
60 X=SCX(I)
70 Y=SCY(P)
80 PLOT X,Y,1
99 NEXT |

I RE: RUN <RETURN>

RESULT: A sine wave is drawn on the high-resolution screen.

LOW RESOLUTION GRAPHICS COMMANDS

SECTION SEVEN
LOW-RESOLUTION GRAPHICS COMMANDS

7.1 INTRODUCTION

Section Seven contains graphics commands for use on alow-resolution screen. LOW
RES initializes the low-resolution graphics mode. In this mode, each point plotted is
four pixels high, and four pixels wide. The PREPARE command prepares a low-
resolution screen so that the user can fill it with any information he wishes. The PUSH
and PULL commands respectively store and retrieve this screen from memory. MCOL
allows multi-coloured characters to be displayed, each character being made up of
three colours. The DESIGN command, implemented in SIMONS’ BASIC can be used
to create user-defined multi-coloured characters. The ROTATE command allows you
to rotate characters on alow-resolution screen. The FONT command enables double-
sized characters to be displayed on a low-resolution screen. UPPER is used in
conjunction with FONT to define the characters you wish to display. The ECOL
command allows you to swap one colour for another in a specified area of a low-
resolution screen. The BCKFLASH command allows you to flash character colours.

Also included in this section are various screen functions. The CCOL function returns
the current colour of the cursor; SCOL returns the colour at adefined screen location
and the SCHR function enables you to determine the character at a specified position
on the screen. To complete this section, the “x” command is explained. This allows
you to direct output to the printer without having to use the standard BASIC CMD
command.

7.2 LOW-RESOLUTION GRAPHICS COMMANDS

7.2.1 LOW RES

FORMAT LOW RES 10,pc

or: LOW RES 0

PURPOSE: To initialize the low-resolution graphics mode, and select a plotting
colour.

The LOW RES command sets the screen into the low-resolution
graphics mode, and selects a plotting colour, pc. All plotting now
takes place exactly as in high-resolution and multi-colour graphics
modes, except that the screen is divided into an 80 by 50 dot matrix.
This means that each dot plotted in low-resolution mode is four
pixels high, and four pixels wide. LOW RES 0 terminates low-
resolution plotting.

7-1

SIMONS’ BASIC EXTENSION

WARNING
CERTAIN HIGH-RESOLUTION GRAPHICS
COMMANDS SHOULD NOT BE USED IN
LOW-RESOLUTION MODE. THEY ARE:

BLOCK
GRID
TICK
LABEL
REC

EXAMPLE: To draw a low-resolution circle, and colour it red, a square, and
colour it white, and a triangle, and colour it blue:

ENTER: 10 PRINT "<<SHIFT CLR/HOME>":COLOUR 5,0
20 LOW RES 10,11
30 CIRCLE 10,25,10,10,1
40 PAINT 10,25,1:FCOL 8,0,10,10,2
50 LINE 25,15,45,15,1
60 DRAW TO 45,35,1
70 DRAW TO 25,35,1
80 DRAW TO 25,15,1
99 PAINT 26,16,1:FCOL 7,12,12,12,1
100 LINE 50,35,70,35,1
119 DRAW TO 60,15,1
120 DRAW TO 50,35,1
130 PAINT 60,30,1:FCOL 7,25,12,12,6

TRIE: RUN <RETURN>>

RES /LT A red circle, white square, and blue triangle are displayed on the low-
resolution screen.

NOTE
If the low-resolution graphics mode has been
initialized (through LOW RES 10), then LOW
RES 0 must be used to terminate low-resolution
plotting, or before using HIRES.

=2

LOW RESOLUTION GRAPHICS COMMANDS

7.2.2 PREPARE

FORMAT:

PURPOSE:

EXAMPLE:

Y RE:

RESULT:

7.2.3 PUSH
FORMAT:

RURPOSE:

EXAMPLE:

PREPARE x

To prepare a low-resolution screen for storage in another part of the
64’s memory.

This command, used in direct mode, prepares a low-resolution
screen, text or graphics, for storage in one of four buffers behind
KERNAL. The parameter x, which must be anumber between @ and 3,
specifies which buffer the information is sent to. Once the command
has been initialized, text or graphics may be typed anywhere on the
screen. You can use the cursor keys to move around screen, and
change colour by using the colour keys. When your screen is ready,
press <CTRL-A> to send it to the selected buffer. You are then
returned to direct mode.

NOTE
For purposes of data integrity, the
<INST/DEL> key has been disabled in
PREPARE mode. PREPARE must NOT be used
in MEM mode.

To prepare a low-resolution screen for storage in the first buffer
behind KERNAL:

PREPARE @ <RETURN>

Design your own screen using text and graphics. When it is ready,
press <CTRL-A>> to store it in the first buffer behind KERNAL. Type
PULL ® <RETURNZ> to retrieve your screen.

PUSH x
To store the current screen in another part of the 64’'s memory.

This command can be used as part of a program tc store all
information currently on screen in a buffer behind KERNAL. It is
essentially the same as PREPARE. The parameter x, which must be a
number between @ and 3, designates which buffer the screen will be
sent to. When the screen has been stored, program execution
continues.

To save a screen to the first buffer behind KERNAL from within a
program:

7-3

SIMONS' BASIC EXTENSION

ENTER:

RE:

RESUILLT:

7.2.4 PULL
FORMAT:

PURPOSE:

EXAMPLE:

ENTER:

Y RBE:

RESULT:

10 PRINT CHR$(147)

20 COLOUR 5,15:LOW RES 10,0
30 CIRCLE 40,25,10,10,1

40 PUSH 0

50 PRINT CHR$(147)

60 PAUSE 2

70 PULL 0

RUN <RETURN>

A black circle is drawn on the low-resolution screen. The screen is
saved, and retrieved from the first buffer behind KERNAL.

PULL x

To retrieve a low-resolution screen from another part of the 64’s
memory.

This command, which can be used either in direct mode, or as part of
a program, is used to retrieve a low-resolution screen from one of the
four buffers behind KERNAL. The parameter x, specifies which
buffer the screen will be retrieved from.

NOTE
When the PULL command is executed, the
current screen will be cleared before the
retrieved one is displayed.

To retrieve a low-resolution screen from within a program:

10 PRINT CHR$(147)

20 COLOUR 5,15:LOW RES 10,0
30 CIRCLE 40,25,10,10,1

490 PUSH 0

50 PRINT CHR$(147)

60 PAUSE 2

70 PULL @

RUN <RETURN>

A black circle is drawn on the low-resolution screen. The screen is
saved, and retrieved from the first buffer behind KERNAL.

7.3 SCREEN FUNCTIONS

7.3.1 FONT

FORMAT:

PURPOSE:

FONTN

To select one of the two built-in character sets of SIMONS’' BASIC
EXTENSION.

7-4

EXAMPLE:

ENTER:

R RE:

RESULT:

7.3.2 UPPER
FORMAT:
or:

PURPOSE:

LOW RESOLUTION GRAPHICS COMMANDS

FONT, similar to the MEM command in SIMONS’ BASIC downloads
one of the two SIMONS’ BASIC EXTENSION character sets. The
parameter n, which must be either 1 or 2, specifies which character
set is selected. FONT1 downloads the first 128 characters normally,
then the next 128 characters are loaded such that the first 64 are the
upper parts of the non-inverse characters, and the second 64 are the
lower parts. Using FONT1 in conjunction with UPPER (see next
section) allows double-sized characters in normal text modes.
FONT2 downloads a futuristic, computer-style character set. The
FONT command may be used either in direct mode, or as part of a
program. The NRM command returns you to the standard character
set.

NOTE
Because there are no inverse characters in the
FONT 1 character set, the cursor does not
appear in this mode. There is no space between
the command FONT, and the parameter, n.

To display the numbers, letters, and symbols of the futuristic
character set:

10 FONT2

20 FOR 1=32TO90
30 PRINT CHR$(I):
40 NEXT |

50 PAUSE 5

60 NRM

RUN <<RETURN>

The numbers, letters, and symbols of the futuristic character set are
displayed.

UPPER "text”
UPPER text$
To print double-sized characters on the screen.

The UPPER command, when used in conjunction with FONT1 allows
double-sized text to be printed on the screen. When in FONT1 mode,
UPPER is used instead of PRINT to display double-sized characters.

NOTE
Cursor commands, HOME, CLR, DEL, INST,
are ignored when printing. Care should be
taken to ensure that the string is not going to
overflow onto the next line.

7-5

SIMONS’ BASIC EXTENSION

EXAMPLE:

ENTER:

INRE:

RESULT:

7.3.3 ECOL
FORMAT:

PURPOSE:

EXAMPLE:

ENTER:

Y RE:

RESULT:

To use UPPER in conjunction with FONT1 to display double height
text:

10 FONT1

20 UPPER "THIS TEXT":PRINT
30 UPPER "IS":PRINT

40 UPPER "DOUBLE HEIGHT"
50 PAUSE 5

60 NRM

RUN <RETURN>

The message "THIS TEXT IS DOUBLE HEIGHT" is displayed using
double height letters.

ECOL In,ac,x+,y+,col1,col2
To exchange one colour for another on a low-resolution screen.

The ECOL command allows you to exchange one colour for another
in a specified area of a low-resolution screen. The first two
parameters, In and ac specify the top left coordinates of the screen
area to be checked. The next parameter, x+ is the distance between
the top left corner, and the top right corner. The parameter y+, is the
distance between the top left corner, and the bottom left corner. Col1
is the colour to be exchanged, and col2 is the colour that it will be
exchanged for.

To draw, and paint a circle in dark grey, and exchange it for red:
10 COLOUR 5,15:LOW RES 10,11

20 CIRCLE 40,25,10,10,1

30 PAINT 40,25,1

40 ECOL 0,0,40,25,11,2

RUN <RETURN>

A circle is drawn, and painted in dark grey, and then exchanged for
red.

=6

7.3.4 CCOL
FORMAT:
or:

PURPOSE:

EXAMPLE:

ENTER:

TYPE:

DISPLAY:

7.3.5 SCOL
FORMAT:
or:

PURPOSE:

EXAMPLE:

ENTER:

TYRE:

DISPLAY:

LOW RESOLUTION GRAPHICS COMMANDS

A=CCOL
PRINT CCOL
To determine the current cursor colour.

The CCOL command returns the current cursor colour, the colour
currently being used for all print statements.

To use the CCOL command to determine the current cursor colour:

10 PRINT CHR$(28)

20 LOW COL 2,0,0

30 PRINT "COLOUR=";CCOL
40 PRINT CHRS$(30)

50 PRINT "COLOUR=";CCOL

RUN <RETURN>

COLOUR= 2 (in red)
COLOUR= 5 (in green)

A=SCOL(x,y) /
PRINT SCOL(x,y)

To determine the colour at a specified screen location.

The SCOL command returns the colour at a specified screen
location. The parameter x, is the number of columns across, and the

parameter y, is the number of rows down.

To clear the screen, set the colour to green, and determine the colour
at screen location 0,0:

10 PRINT CHR$(147):CHR$(30)

20 COLOUR 5,0

30 PRINT "THIS IS GREEN"

40 PRINT "THE COLOUR AT 9,0=";SCOL(0,0)
RUN <RETURN>

THIS IS IN GREEN (in green)
THE COLOUR AT 0,0= 5 (in green)

T

SIMONS' BASIC EXTENSION

7.3.6 SCHR
FORMAT:
Qr:

PURPOSE:

EXAMPLE:

ENTER:

YR

DISPLAY:

7.3.7 MCOL
FORMAT:

RURR®SIE:

EXAMPLE:

A=SCHR(x,y)
PRINT SCHR(x,y)
To determine the character at a specified screen location.

The SCHR command returns the poke code (see your
COMMODORE 64 user’s manual, pages 132-134) of the character at
a specified screen location. The parameter x, is the number of
columns across, and the parameter vy, is the number of rows down.
Note that if there is no character at the specified location, then the
number 32, the poke code for a space, is returned.

To clear the screen, set the colour to green, and determine the poke
code at screen location 0,0:

10 PRINT CHR$(147);CHRS$(30);

20 COLOUR 5,0

30 PRINT "THIS IS GREEN"

490 CH=SCHR(0,9)

50 PRINT "THE POKE CODE AT 0,0=";CH

RUN <RETURN>

THIS IS IN GREEN (in green)
THE POKE CODE AT 0,0= 20 (in green)

MCOL col1,col2
To initialize the multi-colour mode, and select two additional colours.

This command sets up the multi-colour character mode, and selects
two additional colours. In this mode, each character may be
standard, or multi-colour. This is selected by the colour nybble, if bit
3 is set, then the character is displayed in multi-colour. In practice
this means thata CTRL colouris standard, and a CBM colour is multi-
colour. Col1 and col2 are two numbers in the range 0-15, and specify
the two colours which in addition to the current cursor colour, make
up a multi-colour character.

To use MCOL in conjunction with DESIGN 3 to design a multi-colour
character:

LOW RESOLUTION GRAPHICS COMMANDS

ENTER: 10 MEM
20 DESIGN 3,5E000+0*8
30 @BBBB
490 @BBBB
50 @BBBB
60 @CCCC
70 @CCCC
80 @DDDD
99 @DDDD
100 @DDDD
110 MCOL 2,1
120 PRINT CHR$(154):REM **x LIGHT BLUE CURSOR %%

130 PRINT "@@@@@@@@@@@@@"
TYPE: RUN <RETURN>
RESULT: A line of red, white, and blue is printed at the top of the screen.
7.3.8 DESIGN
FORMAT: DESIGN 3,$EQ00+ch*8
PURBPOSE; To design multi-colour characters.

The DESIGN command, implemented in SIMONS’ BASIC, may be
used in conjunction with MCOL (see previous section), and enables
you to design your own multi-colour characters. Ch is the poke code
of the character to be redesigned. The line containing the DESIGN
command is followed by eight lines of four characters. All the
characters on one line MUST be the same, and determine the
structure of the multi-colour character.

A or . displays the background colour

B displays col1 (from MCOL)

C displays col2 (from MCOL)

D displays the current cursor colour
NOTE

As in MCOL, CTRL colours are standard, and
CBM colours are multi-colour. This means that
if CTRL BLK is selected, normal black
characters are printed. If CBM BLK is selected,
multi-colour characters are printed, with black
being colour D. As in the other DESIGN
applications, ALL lines of the design grid must
begin with the @ symbol.

EXAMPLE: To use DESIGN in conjunction with MCOL to design a multi-colour
character:

7=9

SIMONS’ BASIC EXTENSION

ENTER:

TYPE:

RESULT:

7.3.9 ROTATE
FORMAT:

or:

PURPOSE:

EXAMPLE:

10 MEM

20 DESIGN 3,$E000+0*8

30 @BBBB

40 @BBBB

50 @BBBB

60 @CCCC

70 @CCCC

80 @DDDD

90 @DDDD

100 @DDDD

110 MCOL 2,1

120 PRINT CHR$(154):REM *x* LIGHT BLUE CURSOR **%
130 PRINT "@@@@Q@Q@@@Q@@Q@@@"

RUN <RETURN>

A line of red, white, and blue is printed at the top of the screen.

ROTATE $E0QD+ch*8
ROTATE $EQ00+ch*8,$EQDD+an*8
To rotate a group of eight bytes.

The ROTATE command rotates a character, a group of eight bytes
clockwise through 90 degrees. The address is the same as the one
used for DESIGN; the parameter chis the poke code for the character
you wish to rotate. There are two types of format. The first rotates the
character clockwise through 90 degrees, and stores it back in its
original address. The second also rotates the character clockwise
through 90 degrees, but instead of returning it to its original address,
places it in another address. The parameter an, specifies which
address the rotated character will be placed in.

NOTE

When using the second type of format, it is
important to remember that the new rotated
character overwrites the character whose poke
code is an. However, this is only temporary and
you may return to the normal character set by
pressing <RESTORE>. ROTATE can only be
used in MEM mode.

To rotate the letters of the aiphabet through 180 degrees:

LOW RESOLUTION GRAPHICS COMMANDS

ENTER: 10 MEM
20 PRINT "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
30 FOR 1=1TO26
40 ROTATE $E00Q+1x8
50 ROTATE $E00Q+1x8

60 NEXT |
70 PAUSE 5
80 NRM
TYPE: RUN <RETURN>
RESULT: The letters of the alphabet are displayed upside-down.

7.3.10 BCKFLASH

FORMAT: BCKFLASH speed, col1, col2
or: BCKFLASH 0
PURPOSE: To flash, or stop flashing two background colours.

The BCKFLASH command allows you to flash two background
colours. The first parameter, speed, must be anumber between 1 and
255, and determines the speed at which the flashing takes place, 1
being the fastest, and 255 the slowest. The next two parameters, coll
and col2, must be two integers in the range 0-15, and specify the two
colours which are flashed. BCKFLASH 0 turns background flashing
off, without affecting sprite handling. The BCKFLASH command
proves more useful than FLASH (see Section 7.3 in your SIMONS’
BASIC manual) in certain situations, because speed of execution is
not affected so badly.

NOTE
You must call INIT (see Section 8.3.8) before
background flashing can take place. The
BCKFLASH command can only be used as part
of a program.

EXAMPLE: To flash two background colours:
ENTER: 10 INIT
20 BCKFLASH 8,14,6
30 PAUSE 10
TYPE: RUN <RETURN>>
RESULT: The background colour flashes alternatively between light blue, and

dark blue for ten seconds.

SIMONS’ BASIC EXTENSION

7.3.11 x

FORMAT:

PURPOSE:

EXAMPLE:

ENTER:

TRE:

RESULT:

*any command

To direct the output from any command to the printer.

An asterisk inserted before any command sends the output from that
command to the printer, thus eliminating the need to OPEN a
channel, and send output viathe CMD command. Thiscommand can
be used either in direct mode, or as part of a program.

To send the output from PRINT and LIST commands to the printer:
10 xPRINT “THIS PROGRAM USES THE 'x" COMMAND”

20 xPRINT “TO SEND COMMANDS TO THE PRINTER”

30 xLIST

RUN <RETURN>

The message:

THIS PROGRAM USES THE 'x' COMMAND
TO SEND COMMANDS TO THE PRINTER

and a listing of the program are printed out on the printer.

SPRITE MANIPULATION COMMANDS

SECTION EIGHT
SPRITE MANIPULATION COMMANDS

8.1 INTRODUCTION

This section contains additional commands for use with sprites.

8.2 SPRITES

8.2.1 INTRODUCTION

For more information on sprites, see Section 8 of your SIMONS’ BASIC MANUAL.
8.2.2 WHAT IS A VECTOR DRIVEN SPRITE?

SIMONS’ BASIC EXTENSION takes the sprite commands implemented in SIMONS’
BASIC one step further, by introducing VECTOR DRIVEN SPRITES.

A vector quantity is something that has both direction and magnitude. The SPRITE
command allows you to set up the vectors for each sprite, direction and magnitude, or
speed. However, the SPRITE command does not end at vectors. You can set up four
barriers, low x, low y, high x, high y, and specify what your sprite does when it reaches
one.

Having set up your sprites, you can START them moving at exactly the same time.
Using BARRIER, you can change x and y flags, and using CHANGE, you can alter the
enab register, which controls sprite movement, and detects sprite/barrier collisions.
CLEAR enables you to stop one or more sprites at the same time, and the INFO
command returns the status of a specific sprite. SPRX and SPRY respectively return
the coordinates of a selected sprite, and SPR LOC tells you the start location of your
sprite data in RAM. The INVERT command turns a sprite upside-down, and REVERSE
reverses a sprite.

Using ON DETECT you can check for sprite/text collisions, sprite/sprite collisions, or
both. You also specify a line, which the program jumps to in the event of a collision.
The CONTINUE command is used at the end of sprite collision routines, it returns
program execution to where it was before the collision took place.

The SHOW command can be used to examine the sprite data in a specific memory
location, or to set up the sprite design grid.

8-1

SIMONS' BASIC EXTENSION

The INIT command sets the sprite handler into operation, and NORMAL disables it.

Finally, TRANSFER and CREATE. The TRANSFER command transfers sprite data to
high-resolution data, and the CREATE command creates sprite data from high-
resolution data. Using TRANSFER and CREATE, you can create theillusion that there
are many more than eight sprites on screen.

8.2.3 WHAT IS A FRAME?

Most televisions and monitors work along the “raster scan” principle. Imagine a dot
that starts off in the top left-hand corner of the screen, and moves horizontally to the
top right-hand corner of the screen. When it reaches the right-hand edge of the
screen, it simultaneously jumps down a line, and returns to the left-hand side of the
screen. It then moves horizontally to the right-hand edge of the screen again. In this
way the dot continues until it eventually reaches the bottom right-hand corner of the
screen. Once it has reached the bottom right-hand corner of the screen, the dot jumps
up to the top left-hand corner, and starts all over again. This dot is the raster beam.

The reason we don't see the raster beam is that it moves incredibly fast. As the raster
moves across and down the screen, it receives information from the video chip. This
information tells the raster beam which parts of each line, or raster, to “light up”, in this
way we can see that atelevision picture is made up of many horizontal lines, or rasters.

One complete “frame” is the time that it takes for the raster beam to travel from the top
left-hand corner of the screen, to the bottom right-hand corner of the screen. There
are approximately 60 frames a second!

With SIMONS’ BASIC EXTENSION, all sprites are moved while the raster beam is off

the screen. Because of this, sprite movement (even with eight sprites moving at once)
is very smooth, and flicker-free.

8.3 SPRITE MANIPULATION COMMANDS

8.3.1 SPRITE

FORMAT: SPRITE spr,xvec,yvec,sp

or: SPRITE spr,xvec,yvec,sp,lox,loy,hix,hiy,flx,fly,enab

PURPOSE: To set up a sprite vector, speed, barriers, sprite flags, and an enab

register.

The SPRITE command sets up a sprite vector, speed, up to four
barriers, sprite flags (which determine what happensinthe eventof a
sprite/barrier collision), and the enab register (which checks for
sprite/barrier collisions).

SPRITE MANIPULATION COMMANDS

The first parameter, spr, is the sprite number. It is unique for each
sprite, and is set up in the MOB SET command (see Section 8.2.5 of
your SIMONS’ BASIC MANUAL). The next two parameters, xvec and
yvec, are the two elements of the sprite vector. The parameter xvec,
determines how many pixels the sprite moves along the x-axis each
time it is updated, and the parameter yvec, determines how many
pixels the sprite moves along the y-axis each time it is updated. The
next parameter, sp, is the speed. This dictates the frequency with
which sprite updates take place, a “1” in this position means that the
sprite is moved every frame, a “2” in this position means that the
sprite is moved every other frame, and so on. Lox, loy, hix, and hiy are
the four barriers, lox and loy are the low barriers of the x and y axes,
and hix and hiy are the high barriers of the x and y axes. The next two
parameters, flx and fly, specify what happens in the event of a
sprite/barrier collision. The commands are as follows:

1 - turn sprite off

2 - set INFO(spr) (see Section 8.3.8)
4 - reverse xvec

8 - reverse yvec

16 - stop sprite

NOTE
If you require two or more of the above
functions, add their respective numbers
together, i.e. to reverse both xvec and yvec, use
127

The final parameter of the SPRITE command is enab, this controls
sprite movement, and checks for sprite/barrier collisions. The
commands are as follows:

1 - move sprite, this sets a sprite moving. But, you may not want this
to happen. To start a number of sprites moving at the same time,
see Section 8.3.4.

2 - do x comparison, this checks to see if either the lox or hix
barriers have been crossed. If either of the x barriers are crossed,
then control is transferred to the flx register. If neither of the x
barriers is crossed, then the sprite continues along its vector.

4 - do y comparison, this checks to see if either the loy or hoy
barriers have been crossed. If either of the y barriers are crossed,
then control is transferred to the fly register. If neither of the y
barriers is crossed, then the sprite continues along its vector.

8-3

SIMONS' BASIC EXTENSION

NOTE

As with flx and fly, if you require two or more
functions, add their respective numbers
together, i.e. to do both x and y comparisons,
use “6”. If a “@” is put in the enab register, then
the sprite in question travels along its vector
with total wrap-around, i.e. if a sprite goes off
one side of the screen, it reappears in the same
position on the opposite side.

EXAMPLE: To use the SPRITE command to set up a sprite vector, speed,
barriers, sprite flags, and an enab register:

ENTER: 1@ PRIMNT CHR$(147)
2@ INIT

390 MOB OFF @
4a MOB OFF 1
5@ DESIGN 1,29@%x64

=J
2
=]
m
m
m
o
m

.BEBBEB.
-.BEBBBH. ... -
16990 ©2BBBBBBE.. ...
1190 @BRRRBR. . .BBBBB

0 W
Q9
@ 2

126 EBRBB....BBBB.
1260 BEBH. .. . BBB. -
tda ®BBB....BB...
150 @BRBB. « v ¢ v .o
L S Sl i o8 S B B
178 @RBB....CCC..
1B CREB. . . . CEEE.
AN RBHE LS EEEC

A ©BEREBEBBB.....
21N UIHBERER LS
2

2z@ 0, BREBBB.....
BEE @ongopanasaos
=hatal (ol o o oo e o
BEA
270 MOB SET @,240,2,0,1
2230 CMOB 6.2
29 RLOCHMOB @,100,100,0, 1
3@ SPRITE @,2,2,1,23,49,323,231.,4,8.,7
310 PAILISE S
TYPE: RUN <RETURN>
RESULT: The sprite moves around the screen diagonally, and bounces off the

screen border

NOTE
If the first type of format (i.e. SPRITE
spr,xvec,yvec,sp) is used, then all the other
parameters in the SPRITE command are set to
zero.

8-4

SPRITE MANIPULATION COMMANDS

8.3.2 XVEC
FORMAT: A=XVEC(spr)
or: PRINT XVEC(spr)
PURPOSE: To read the x vector.
The XVEC command returns the x vector of sprite spr.
EXAMPLE: To read the x and y vectors:
ENTER: 18 PRINT CHR$(147)
20 INIT
30 MOB OFF ©
49 MOB OFF 1
50 DESIGN 1,240%64
60 ©..::..-nes
70 ©..BBBBB.....
S@ ©®.BBBBBB.....
S0 ©.RBBBBB.....
10@ ©BBBBBBB.....
11@ eBBBE...BBBBB
120 ©BBB....BBBB.
130 eBBB....BBB..
149 ©BBB....BB...
150 @BBB.........
169 ©BBB....CC...
17@ ©BBB....CCC..
120 ©BBB....CCCC.
19@ @BBBB...CCCCC
29@ ©BBBBBBB.....
219 ®.BBBBBB.....
227 ©.BEBBBBB.....
230 ©..BBBBB.....
2408 B, . .. iwan
250 ©............
260 @............
270 MOB SET ©,249.,2.,0@,1
Z8@ CMOB B,2
298 RLOCMOB ©,100,100,0,1
300 SPRITE ©,2.,2,1,23,49,323,231,6,10,7
310 PRINT "XVEC=":XVEC(®),"YVYEC=":YVEC@)
3280 GOTO310
Y PE: RUN <RETURN>
RESULT: As the sprite bounces around the screen, its x and y vectors are

displayed.

8-5

SIMONS’ BASIC EXTENSION

8.3.3 YVEC
FORMAT:
or:

PURPOSE:

EXAMPLE:

A=YVEC (spr)

PRINT YVEC(spr)

To read the y vector.

The YVEC command returns the y vector of sprite spr.

See example program in Section 8.3.2.

8.3.4 BARRIER

FORMAT:

PURPOSE:

EXAMPLE:

ENTER:

Y PE:

RESULT:

BARRIER spr,lox,loy,hix, hiy,flx,fly,enab

To change the barriers.

The BARRIER command allows you to change the barriers whilst a
program is running. Spr is the sprite number, and the next four
parameters, lox, loy, hix, and hiy, are the barriers. FIx and fly are the x
and y flags, and enab is the value for the enab register.

To change the sprite barriers whilst the program is running:

320 RLOCMOB 0,180,150,0,1

330 BARRIER 0,103,123,243,151,4,8,7

340 PAUSE 5

RUN <RETURN>

After a pause of five seconds, the sprite barriers are altered such that
the sprite is confined to the central part of the screen.

8-6

SPRITE MANIPULATION COMMANDS

8.3.5 CHANGE

FORMAT:

PURPOSE:

EXAMPLE:

ENTER:

TYPE:

RESULT:

8.3.6 START
FORMAT:
or.

PURPOSE:

CHANGE spr,enab
To change the enab register.

The CHANGE command allows you to alter the enab register whilsta
program is running. Spr is the sprite number, and the parameter
enab, is the enab register. This controls sprite movement, and checks
for sprite/barrier collisions. The commands are as follows:

1 - move sprite, this sets a sprite moving. But, you may not want this
to happen. To start a number of sprites moving at the same time,
see Section 8.3.4.

2 - do x comparison, this checks to see if either the lox or hix
barriers have been crossed. If either of the x barriers are crossed,
then control is transferred to the flx register. If neither of the x
barriers is crossed, then the sprite continues along its vector.

4 - do y comparison, this checks to see if either the loy or hiy
barriers have been crossed. If either of the y barriers is crossed,
then control is transferred to the fly register. If neither of the y
barriers is crossed, then the sprite continues along its vector.

To change the enab register whilst the program is running:

350 CHANGE 0,5
360 PAUSE 5

RUN <RETURN>

After a pause of five seconds, the enab register is altered such that the
X comparison no longer takes place.

START spr
START spr,spr
To set one or more sprites into motion.

This command sets one or more sprites moving along their vectors.
Spr is the the number of the sprite that you wish to set into motion, for
example, to start sprites 0, 5, and 6 moving at the same time, use
START 0,5,6. The START command ensures that all the sprites
specified start moving at exactly the same time. Using START with no
parameters, sets all the sprites that have been set up into motion. Up
to eight sprites may be started at any one time.

SIMONS’ BASIC EXTENSION

NOTE
In order to utilise the START command, the
enab register in the SPRITE command must not
include the move sprite command, a “1”.

EXAMPLE: To set up a second sprite, identical to the first, and start them both
moving at the same time:

ENTER: 370 MOB SET 1,240,2,1,1
380 RLOCMOB 0,180,150,0,1
3990 RLOCMOB 1,180,150,2.1
400 SPRITE 1,2,-2,1,103,129,243,151,4,8,6
410 START 0,1

420 PAUSE 5

Y RE: RUN <RETURN>

RESULT: After a pause of five seconds, a second sprite is set up. Both sprites
are relocated, and set into motion at the same time.

8.3.7 CLEAR

FORMAT: CLEAR spr

or: CLEAR spr,spr

PURPOSE: To stop one or more sprites.
This command stops one or more sprites. Spr is the number of the
sprite that you wish to stop, for example, to stop sprites 0, 5, and 6 all
at the same time, use CLEAR 0,5,6. The CLEAR command ensures
that all the sprites specified stop moving at exactly the same time.
Using CLEAR with no parameters, stops all the sprites that are
currently moving along their vectors. Up to eight sprites may be
stopped at any one time.

EXAMPLE: To stop both sprites at the same time:

ENTER: 430 CLEAR 0,1
440 PAUSE 5

TYPE: RUN <RETURN>

RESULT: After a pause of five seconds, both sprites are stopped at the same
time.

8-8

8.3.8 INIT
FORMAT:

PLURPOSE:

EXAMPLE
ENTER:
TYPE:

RESULT:

SPRITE MANIPULATION COMMANDS

INIT
To set the sprite handler into operation.

INIT sets the sprite handler into operation, and also sets INFO (0-7) to
zero. INIT must be called before any of the SIMONS’' BASIC
EXTENSION sprite commands can be used. The INIT command also
enables background flashing to take place, although flashing does
not start until BCKFLASH is used, see Section 7.3.10.

WARNING
Sprites must not be in motion when INIT is
called. If there is any possibility that the sprites
are moving, use CLEAR 0,1,2,3,4,5,6,7 before
calling INIT.
To initialize the sprite handler, and set up a sprite:
See example program in Section 8.3.1

RUN <RETURN>

Because the sprite handler has been initialized, all SIMONS’ BASIC
EXTENSION sprite commands now function correctly.

8.3.9 NORMAL

FORMAT:

PURPOSE:

EXAMPLE:

ENTER:

INYRE:

RESULT:

NORMAL

To disable the sprite handler.

NORMAL disables the SIMONS’ BASIC EXTENSION sprite handler,
and should be used whenever VECTOR DRIVEN SPRITES are no
longer required. This command is executed automatically whenever
you leave a program.

To disable the sprite handler:

450 NORMAL

460 PRINT "SPRITE HANDLER DISABLED”

4790 PAUSE 5

RUN <RETURN>

After a pause of five seconds, the sprite handler is disabled.

8-9

SIMONS’ BASIC EXTENSION

8.3.10 INFO

FORMAT:

or:

PURPOSE:

EXAMPLE:

ENTER:

A=INFO(spr)
PRINT INFO(spr)
To determine the status of a selected sprite.

The BASIC variable INFO is initially set to zero. If the sprite collides
with a boundary, then INFO is set to one. It is cleared as soon as it is
read. The single parameter, spr, is the sprite number.

NOTE
In order to be able to read the BASIC variable
INFO, you must first set it in the x and y flags,
which are part of the SPRITE command, see
Section 8.3.1.

To return the status of sprite 0:

18 PRINT CHR$:{147)
2 INIT

30 MOB OFF @

4@ MOB OFF 1

S50 DESIGN 1,29@%x64
BB ®B...0i000e0ee-
78 &, .BBBBB... ..
8@ °,.BBEBBBB.....
90 0.BBBBBB.
1089 ©BBRBEBBB.....
11®% CREBBR...BBBEBB

120 ©BEBB....BBBB.
138 ©@BRR....BBE..
148 ©BBRBR....BB...
PSBNBBBIN
HEFRORERIEENIEET R
170 @BRB....CCC..
iz@a eeBB....CCCC.

e eBBEB. o . CCECE

228 ®.BBEBBB.
22N BBRERB LI
G s S D S s G o
Erel (es 56 5 A a o o o
mdsiel e s o oo oo aa oo

278 MOB SET @,240,2.,0,1

2880 CMOBR 6,2

29Aa RLOCHMOB @, 100, 100.,0,1

I0G. SERITE @2 .2 ,1,23,49,33,231 6,18, 7
310 PRINT "SPRITE INFOQ":INFO(@>

220 GO0T0z18

SPRITE MANIPULATION COMMANDS

HYPRE: RUN <RETURN>
RESUILET: The sprite’s status is returned. Normally itis 0, but changesto 1 when
the sprite collides with a boundary.
8.3.11 SPRX
FORMAT: A=SPRX(spr)
or: PRINT SPRX(spr)
PURPOSE: To determine the x position of a selected sprite.
The SPRX command returns the x position of a selected sprite. The
parameter spr is the sprite number.
NOTE
Even though sprite movement may actually be
taking place on alow-resolution or multi-colour
screen, all sprite coordinates are returned as if
on a high-resolution screen, i.e. x coordinates
are on a scale of -320, and y coordinates are on
a scale of 0-200. However, in most situations the
scaling deviates slightly from the standard
high-resolution screen limits, i.e. for an
unexpanded high-resolution sprite, the x
coordinates are on a scale of 23-323, and the y
coordinates are on a scale of 49-231.
EXAMPLE: To return the x and y positions of the sprite:
ENTER: 180 PRINT CHR$(147)

28 INIT

Za MOR OFF @

44 MOB QFF 1

5@ DESIGHM 1,2980%649
&6 ©

B &..BBBBB.....
80 ©.BEBBBR.....
98 UL BREBBBR:
199 vBBBEBBBB.....
11@ ©ORBBR...BBBBRB

1z ©EBB....BEBE.
122 OBRBB....BBR..
149 CUBRB....BB...
PSR RRBE L L
TEQNORBER OO EE .
PreNRREER SO EEC
15@ ©BBB....CCCC.

13@ ReEBBR...CCCCC
0y ©OBEBEBBB.....

SIMONS’ BASIC EXTENSION

28 B .BBEEBB. . 4. «
S0 BEBRR .
AR .
=25@a ©

27ve MOB SET ©.,2498.,2.,8.,1

288 CMOB B .2

230 RLOCHMOB @,100,1880,0,1

SONNSPRITME @,2,2 L 23,49, 323, @3 &, 17
218 PRINT "K=":5SPRX(@) , "Y=":SPRY (A
328 G0TO31@

TYPE: RUN <RETURN>

RESULT: As the sprite bounces around the screen, its x and y positions are
displayed.

8.3.12 SPRY

FORMAT: A=SPRY (spr)

or: PRINT SPRY((spr)

PURPOSE: To determine the y position of a selected sprite.

The SPRY command returns the y position of a selected sprite. The
parameter spr is the sprite number.

NOTE

Even though sprite movement may actually be
taking place on alow-resolution or multi-colour
screen, all sprite coordinates are returned as if
on a high-resolution screen, i.e. x coordinates
are on ascale of 0-320, and y coordinates are on
a scale of 0-209. However, in most situations the
scaling deviates slightly from the standard
high-resolution screen limits, i.e. for an
unexpanded high-resolution sprite, the x
coordinates are on a scale of 23-323, and the y
coordinates are on a scale of 49-231.

EXAMPLE: See example program in Section 8.3.12

SPRITE MANIPULATION COMMANDS

8.3.13 SPR LOC

FORMAT: A=SPR LOC(spr)
or: PRINT SPR LOC(spr)
PURPOSE: To determine the start location of the sprite data for a selected sprite.

The SPR LOC command returns the start location of the sprite data
for the selected sprite. The parameter spr is the sprite number, i.e. if
sprite @ is set to block 32, then PRINT SPR LOC(0) returns 2048.

EXAMPLE: To return the start location of the sprite data in memory:
ENTER: 18 PRINT CHR$¢147)
29 INIT

38 MORBR OFF @

480 MOB OFF 1

58 DESIGN 1,290%x64
B MO e s e e s ek
70 €. .BBEBBB.
29 C.BBBEBB.....

199 ©BBBBBBB.....
11 ©RBBE...BBBEB

1z ©BBB....BBBB.
1237 ORREE... .BBE..
148 @RERB....BE...
15@ ®BBB.........
TN BERN A EE L
lrel OMBRBL. . JECE ..
1260 PBBB.. . .CECE.

19¢ OBREB. . .CCELC
cvd CBRERBBEBBB.....
.BBBBBR.
.BEBBEBEBB.....

n
0y on

o]
PR @
m

{1y

m

s}

m

.....

nonn
D) S O

[

3 13

n
n)]
]
I<)

MOB SET 8.,2496.,2.,8,1

cCMOB B .,2

RLOCHMOR ©,108,100,0,1

SPRITE ©,2.,2,1,23,49,323,231.,6.,1a0.,7
PRINT "SPRITE BLOCK=":5PR LOC(®)
BaSESS

Wow Wi
N -2 0 0
S 083323

TYPE: RUN <RETURN>

DISPLAY: SPRITE BLOCK= 240

SIMONS’ BASIC EXTENSION

8.3.14 INVERT
FORMAT:

or:

or:

PURPOSE:

EXAMPLE:

ENTER:

TYPE:

RESULT:

INVERT A
INVERT 8192
INVERT $2000
To invert a sprite.

The INVERT command turns a sprite upside-down. The number
following the INVERT command must be the address of the first byte
of the sprite data, the same address as in DESIGN, see Section 8.2.2
of your SIMONS’ BASIC MANUAL.

To invert the sprite while it is in motion:

18 PRINT CHR$(147)
o INIT

30 MOBR OFF ©

48 MOB OFF 1

5@ ODESIGN 1,240%64

©....CCCCCccep
128 o, . . CCECEECHD
UEEE EECEE L
©

14@ <CECCCCEBRBR
150 @BBBRBBREBDODD
159 ©RBBBEBBRDDDD
1760 ©BRBBRBRBDODD
159 UBBEBEBBBDOOD
194 CBREBBBRBREBDODD
o TRBBBERBBDODDD
21e LeRBEBBRBOODD
e wEBBBEEBBBODDD

230 ©BEBRBBEBDDD.
‘HBEBRBEBBELOO . .

2S¢ YBBRERBBERO. ..
UBEBBBEBBE. . . .

278 MOB SET 8,240 .2.,0,1
230 CHMOB &.5

Z39Q RLOCHMOE @,100,100,8,1
399 SPRITE &,2.2.,1,23,49,323,231.6.,18,7
3180 INVERT SPR LOCCB) %64
328 FPAUSE =

2B GaTO31@

RUN <RETURN>

i
5
-
i
G 2

n
J)
=
)

The sprite bounces around the screen, inverting every three seconds.

8-14

SPRITE MANIPULATION COMMANDS

8.3.15 REVERSE

FORMAT:
or:
or:

PURPOSE:

EXAMPLE:
ENTER:
TYPE:

RESULT:

8.3.16 SHOW
FORMAT:

or:

or:

or:

PURPOSE:

REVERSE A

REVERSE 8192

REVERSE $2000

To reverse a sprite.

The REVERSE command reverses a sprite. The number following the
REVERSE command must be the address of the first byte of sprite
data, the same address as in DESIGN, see Section 8.2.2 of your

SIMONS' BASIC MANUAL. The reversal procedure uses an
exclusive-or, i.e., the following happens:

HIGH-RESOLUTION SPRITES MULTI-COLOUR SPRITES
dot on - dot off colour® - colour3
dot off - dot on colouri - colour2

colour?2 - colouri
colour3 - colour®

To reverse the sprite:
310 REVERSE SPR LOC(0)x64
RUN <RETURN>

The sprite bounces around the screen, reversing every three
seconds.

SHOW addr

SHOW addr,line

SHOW addr,line,inc
SHOW addr,line,inc,mcs

To show the sprite data at a particular address, or to set up a sprite
design grid.

SIMONS’ BASIC EXTENSION

EXAMPLE:

ENTER:

YPRE:

RESULT:

The SHOW command shows the sprite data at the specified address.
The first parameter, addr is the address of the first byte of sprite data,
the same address as in DESIGN, see Section 8.2.2 of your SIMONS’
BASIC MANUAL. The sprite data is taken from memory, and
displayed using “@”, “.”, and “B”. Spaces are left foryoutoinsertline
numbers. Using the second format, where the parameter line is the
start line number, the sprite data is displayed with line numbers
starting from line in increments of ten. The third format allows you to
specify the increment (inc), as well as the start line number. If, in the
fourth format, the parameter, mcs, is anything other than a zero, then
the sprite is displayed as a multi-colour one.

To show the sprite data:

18 PRINT CHR$C(147)

20 INIT

386 MOB OFF @

40 MOB OFF 1

50 DESIGN 1,249@%64
G e g S G0 e o

Fel 2l (et s G o G o

80 8L s s -

SANE . L,

190 (0. . oot e e e

11@ &....CCCcCccccD

126 @...CCCCCCCDD

13@ @..Cccccccppp

148 ®.CCCCCCCDDDD

150 @eBBBBBBBBDDOD

168 ®BBBBBBBBDDDD

178 ©BBBBBBEBBDDDD

188 ©BBBBBBBBODDD

13@ ©BBBBBBRBBDDDD

208 @BBBBBBBBDDOD

218 eBBBBBBBBDDODD

229 ©@BBBBBBBBODDD

238 eBBBBBBBBDOOD.

Z40 ©@BBBBBBBBDOD. .

2568 CBBBBBBBBD. ..

60 ©@BBBBBBBB....

278 MOB SET ©,2490.,2.,0,1
230 CMOB 6,5

290 RLOCMOB ©,180,100,0,1
308 SHOW SPR LOC(®)x64,1000, 10, 1

RUN <RETURN>

The multi-colour sprite, and the data used to create it are displayed.

8.3.17 ON DETECT

FORMAT:

PURPOSE:

EXAMPLE:

ON DETECT comm,line

SPRITE MANIPULATION COMMANDS

To check for sprite/sprite, and/or sprite/text collisions.

The ON DETECT command provides continuous detection for
sprite/sprite, and/or sprite/text collisions. The first parameter,
comm, is the command. This must be a number between zero and
three, and specifies the collision type to be checked for. The second
parameter, line, is used with command numbers 1, 2, and 3. It
specifies the line number that the program jumps to if a collision is
detected, just like a GOTO, or GOSUB. The commands are as

follows:
ON DETECT 0

ON DETECT 1,line

ON DETECT 2,line

ON DETECT 3,line1,line2

- disables any active ON DETECT.

- initializes sprite/sprite collision
detection, and specifies a line number
that the program will jumptoin the event
of a collision.

- initializes sprite/text collision
detection, and specifies a line number
that the program will jump toin the event
of a collision.

- initializes sprite/sprite and sprite/text
collision detection. If a sprite/sprite
collision occurs, then the program will
jump to line 1, and if a sprite/text
collision occurs, then the program will
jump to line 2.

To set two sprites into motion, and transfer the sprite data onto the
multi-colour screen every time they collide:

SIMONS’ BASIC EXTENSION

ENTER:

TYPRE:

RESULT:

18 HIRES 15,0

20 MULTI &6.2,5
36 COLOUR 5,15
40 SC=%C000

Sa 1

NIT

5@ OB OFF @
78 MOB OFF 1
30 DESIGN 1,SC+40x%64

118
120
130
190
154
16@
17e
186
138
20
c1e

228

RUN

Every time the two sprites collide, the sprite data is transferred onto

®....CCCCEECCh
. CCCCCcCcCDD
. .CCCCCCCDDD
.CCCccCccchbDoD
BBBEBBEBOODD
BBEBBBBBRODOD
BBBERBBEBBDODD
8BBBBBBBOOOO
8BEBBBBBDODD
BBBBBBBEBODOD
BEBEEBBBBBDDDD
CBEBBBBBBODOD
©EBBRBBRBBDDD.
©BBEBBEBBBDOD. .
ORBBRBBEBBD. . .
vBEBBBBBB. ...

B? B M@

==

Li

[=]

= 2= -

MOB SET 0,40 .,2,0,1
MOB SET 1.,49@8,2,98,1

CMOB 6.5

RLOCMOB® ,40,123,0,1
RLOCMOB1 .,280, 123,08, 1
SFRITE @,-3,1,1,23,49,323,231,4,8,7
SPRITE 1.,1,-3,1,23,48,323,231,4,8,7

ON DETECT!1, 1000:DETECTO

GOTO38@

X=(SPRX{(B)>-23>ANDS5 10
Y=(SPRY (@) -49)AND254
A=SPR LOC (@) *¥84+SC

TRANSFER 1,1,

CONT INUE

<RETURN>

X,Y,A

the multi-colour screen.

SPRITE MANIPULATION COMMANDS

8.3.18 CONTINUE

FORMAT:

PURPOSE:

EXAMPLE:

RESULT:

CONTINUE

To return program execution to where it was before a collision was
detected.

The CONTINUE command returns program execution back to where
it was before a collision was detected, just like a RETURN at the end
of a sub-routine. CONTINUE should be used at the end of sprite
collision routines.

To return program execution after a sprite collision routine - See
Section 8.3.17 line 1040

After the sprite data is transferred onto the multi-colour screen,
program execution resumes.

8.3.19 TRANSFER

FORMAT:

PURPOSE:

EXAMPLE:

RESULT:

TRANSFER expx,expy,X,y,addr
To transfer sprite data to high-resolution data.

The TRANSFER command transfers sprite data to high-resolution
data. The first two parameters, expx, and expy, are the x and y
expansion factors; a “1” denotes normal size, a “2” denotes double
size, etc. The next two parameters, x and y, are the top left-hand
coordinates of the area to which the sprite data is to be transferred. X
and y must always be coordinates for a high-resolution screen (0-
320, and 0-200), even if you are in multi-colour mode. The final
parameter, addr, is the start address of the sprite data, the same as
that used in DESIGN, see Section 8.2.2 of your SIMONS’ BASIC
MANUAL.

NOTE
If you are transferring multi-colour sprites to a
multi-colour screen, then the colours are
converted as follows:

SPRITE CODE PLOT TYPE
A)
B 1
C 2
D 3

To transfer sprite data onto the multi-colour screen - See Section
8.3.17 line 1030.

Every time the two sprites collide, the sprite data is transferred onto
the multi-colour screen.

8-19

SIMONS’ BASIC EXTENSION

8.3.20 CREATE

FORMAT:

PURPOSE:

EXAMPLE:

ENTER:

Y RE:

RESULT:

CREATE x,y,addr

To create sprite data from high-resolution data.

The CREATE command creates sprite data from high-resolution
data. The first two parameters, x and y, are top left-hand coordinates
of the area from which the sprite data is to be created. The final
parameter, addr, is the start address of the sprite data, this is where
the sprite data will be written to when the CREATE command is

executed.

NOTE
Even though the sprite data is written into
memory when the CREATE command is
executed, you will still have to use the MOB SET
command (see Section 8.2.5 of your SIMONS’
BASIC MANUAL) if you wish use the sprite.

To create sprite data from high resolution data:

1@
ca
30
4@
59
=12}
7o
2a
98

HIRES IS5 ,.0

CIRCLE 112,118,10,10,1

PAINT 11@,119,1

CREATE 100,100 ,3C000+40%x64

MOB OFF @

RLOCMOB @,123,145,0,1

MOB SET @.,4@,15,0.,8

INIT

SPRITE B.,2.,2,1,23,49,3238,231.4.,8,7

190 GOTO1880

RUN <RETURN>

A circular sprite is created by using the CIRCLE and PAINT

commands.

8.4 NOTES ON VECTOR DRIVEN SPRITES

The following commands will stop all vector driven sprites from moving, because they

need to access the character ROM:

MEM
FONT1
FONT2
TEXT
LABEL

8-20

MUSIC COMMANDS

SECTION NINE
MUSIC COMMANDS

9.1 INTRODUCTION

This section contains additional music commands; FILTER, MODE, PULSE, and
BEEP.

The FILTER command enables you to set up a value for the filter, and MODE sets up
the filter mode and resonance. The PULSE command sets up pulse width.

BEEP is for those applications that only require simple sound.

9.2 WHATIS A FILTER?

A filter is a vital part of any synthesizer. Just like the envelope generator can shape the
ADSR of each note, the filter can actually control the sound make-up, or frequency
spectrum of each note.

Every sound or waveform is made up of many sine waves. The frequency of the sound
is called the fundamental, and the actual make-up of the sound is denoted by its
harmonics. This is why a C played on a piano “sounds” different from a C played on a
violin. The fundamental is the same, but the harmonic structure, or frequency
spectrum is different. Thus, being able to filter out various parts of the frequency
spectrum gives us incredible control over the scope of sounds that we can produce.

This technique is known as subtractive synthesis, starting off with a full frequency
spectrum, and taking away the parts that we don’t want. The opposite of subtractive
synthesis is additive synthesis, starting off with just the fundamental frequency, and
adding the harmonics.

9-1

SIMONS’ BASIC EXTENSION

9.3 MUSIC COMMANDS

9.3.1 FILTER
FORMAT:

PURPOSE:

EXAMPLE:

ENMER:

TYPE:
RESULT:
9.3.2 MODE
FORMAT:

PURPOSE:

FILTER value
To set up a filter value.

The FILTER command sets up a value for the filter cutoff frequency.
The single parameter, value, is any number in the range 0-2047.

To use FILTER in conjunction with MODE to set up a filter cutoff
frequency:

19 VOL 15

20 WAVE 1,01010000

30 ENVELOPE 1,10,10,8,1

40 FILTER $031A

50 MODE 15,3,7,9

60 MUSIC 9,"<SHIFT CLR/HOME>1<F1>C5<F1>D5<F1>E5
<F1>F5<F1>G5<F1>A5<F1>B5<F1>C6<F1>"

70 PLAY 1

80 GOTO 70

RUN <RETURN>

A filtered, ascending scale is played.

MODE resonance,voice,type,volume
To set up the filter mode, resonance, and volume.

The MODE command sets up filter mode, resonance, and volume for
single or multiple voices. The first parameter, resonance, is any
number in the range 0-15, and specifies how strongly the band of
frequencies at the cutoff point are emphasized. The next parameter,
voice, selects which voice, or voices are put through the filter. The
voice numberis a“1” forvoice 1,a“2” forvoice 2,and a “4” for voice 3.
Multiple voices are specified by adding together the numbers of the
voices that you wish to filter. The next parameter, type, denotes the
filter type, a “1” specifies the low pass filter (all frequencies or
harmonics below the cutoff frequency are allowed to pass through), a
“2"” specifies the high pass filter (all frequencies or harmonics above
the cutoff frequency are allowed to pass through), and a “4” specifies
the band pass filter (all frequencies or harmonics around the cutoff
frequency are allowed to pass through). The final parameter, volume,
isa numberintherange @-15, and controls the output volume. It is the
same as VOL (see Section 11.2.1 of your SIMONS’ BASIC MANUAL).

9-2

EXAMPLE:

ENTER:

Y RE:
RESULT:
9.3.3 PULSE
FORMAT:

PURPOSE:

EXAMPLE:

ENTER:

YR E:

RESULT:

MUSIC COMMANDS

WARNING
IF MODE HAS BEEN USED TO SET UP THE
VOLUME, THEN VOL MUST NOT BE USED
AFTER IT.

To use MODE in conjunction with FILTER to set up the filter mode,
resonance, and volume:

10 VOL 15

20 WAVE 1,01010000

30 ENVELOPE 1,10,10,8,1

40 FILTER $031A

50 MODE 15,3,7,9

60 MUSIC 9,"<SHIFT CLR/HOME>1<F1>C5<F1>D5<F1>E5
<F1>F5<F1>G5<F1>A5<F1>B5<F1>C6<F1>"

70 PLAY 1

80 GOTO 70

RUN <RETURN>

A filtered, ascending scale is played.

PULSE voice,value.
To set up pulse width.

The PULSE command sets up pulse width for a voice, or number of
voices. The first parameter, voice, is the voice number, a “1”, “2”, or
“3”. To set up pulse width for multiple voices, just add the voice
numbers together. The second parameter, value, is any number in the
range 0-4095, and specifies the actual width of the pulse, 2048 being a
perfect square wave. In order to work out the precise pulse width, use
the formula on page 462 of the PROGRAMMER'S REFERENCE
GUIDE.

To vary the pulse width for voice 1:

10 VOL 15

20 WAVE 1,01000000

30 ENVELOPE 1,5,10,8,1

40 MUSIC 9,"<SHIFT CLR/HOME>1<F1>C5<F1>D5<F1>E5
<F1>F5<F1>G5<F1>A5<F1>B5<F1>C6<F1>"

50 FOR 1=0TO4096 STEP 128

60 PULSE 1,1

70 PLAY 1

80 NEXT

RUN <RETURN>

An ascending scale with varying pulse width is played.

9:8

SIMONS’ BASIC EXTENSION

9.3.4 BEEP
FORMAT: BEEP
PURPOSE: To produce a “beep”.

The BEEP command has no parameters, and simply produces a
“beep” from voice 1.

EXAMPLE: To produce a beep:
TYPE: BEEP <RETURN>
RESULT: A beep is produced from voice 1.

10.1

SECTION TEN
EXAMPLE PROGRAMS

INTRODUCTION

EXAMPLE PROGRAMS

This section contains three programs that demonstrate what may be achieved when
using SIMONS’ BASIC and SIMONS’ BASIC EXTENSION commands. Simply type

each program in and RUN it.

10.2 PROGRAM 1 - GRAPH PLOTTER

This program allows you to define formulae, and plot graphs derived from these
formulae in high-resolution mode.

1000
1010
1020
1030
1040
1050
1968
1ava
1930
1090
1100
1118
1120
1138
114@
115@
1160
1170
1180
1180
1208
121@
1220
1230
12489
1250
1260
ieve
1288
1298
1308

DIM K{255) ,EQ$(27)
K$="0123456783 ABCDEFGHIJKLMNOPRRSTUVIWXTYZ +—%/ +. () >"
K$E=KE+CHR*$ (20) +CHR$(13)

FORI=1 TO LEN{(K®)
K(ASC(MIDH(K$, 1,1
NEXT

HIRES 15,68

»¥)=1

LABEL 10,18, "ENTER EGUATION
LABEL 1@ ,38, "USE VARIABLES

SKX=50:5Y=50:EXEC
EXEC EVAL.STRING
EQ$=EV#$

HIRES 15.@

LABEL 12,18, "ENTER RANGE",1,1.2,1,10,0.,0
®",1,1,2,1,180,0,0

LABEL 10,36, "MIN
SX=70:5Y=30:EXEC
EXEC EVAL.STRING
LX=VAL (EVSE)

LABEL 18,50, "MAX
SX=7r0:SY=50:EXEC
EXEC EMAL.STRING
HX=VAL (EV$)

GET.CHRARK

GET.CHAR

x',1.1.,2.1,10.0,.8

GET.CHAR

IF HX<{=LX THENI11380

LABEL 1@.,7@,"MIN
SX=70:SY=7rOIEXEC
EXEC EVAL.STRING
LY=VAL (EVS$)

LABEL 10 .98, "MAX
SK=70:S5Y=30:EXEC
EXEC EVAL.STRING

Y"rlylre,l,l@,a,a

GET.CHAR

Y",lllrE,l,lB,El,B

GET.CHAR

lxl
LABEL 1@ ,5@8,"Y =",1,1,2,1,180.,8,0

10-1

",1,1,2,1,10,0.,0
£1,1,2,1,10,80.,0

SIMONS' BASIC EXTENSION

13180 HY=VAL (EV$)

13280 IF HY<{=LY THENI1130

13380 HIRES 15,8

1340 LABEL 19,10, "ENTER STEP VALUE",1.,1.,2.,1.,108,2,0
1350 SX=180:5Y=10:EXEC GET.CHAR

136@ EXEC EVAL.STRING

137@ SP=VAL (EV$)

138@ IF SP>(HX-LX)>- 18 THEN133@

1392 MHA=(LX<AIkLX :MY=(LY<@%LY

1400 SCALE MK+HX .MY+HY

1418 HIRES 15.@

142@ HLIN 198-SCY(MY) ,0,320,1

1430 VLIN SCKX(MX),8,200,1

1442 K=LXK:AF="Y="+EQAF+" :BACK"

14580 EVAL A$

1460 IF ¥Y>HY THEN PLOT @.,0,0:G0T0O14390

1470 IF ¥<LY THEWN PLOT ©,183,8:G0T014380

1480 PLOT @ .,20@-SCY(Y+MY) .8

1498 FOR X=LX TO HX STEP SP

1500 EVAL A%

1518 IF Y<LY THEMN PLOT SCK{X+MX) ,189,0:6G0T01540
1528 IF Y>HY THEN PLOT SCK{(X+Mx),@0,0:G0T01540
1530 DRAW TO SCRIK+MK)I . 200-SCrY+MY) , 1

15480 NEXT

15580 LABELBEZ, 192, "PRESS @SPACEE TO CONTINUE",1,1,1,1,8,0,0
1568 GET E$:IF E$<>" " THEN15S60

1578 RUM

1588 PROC GET.CHAR

1590 D=SX

is@@ LABEL D,SY,"_",1,1.,2.,1,18,0,@

1618 LABEL D,S5Y,"_",0.,1,2,1,160,0,0

1620 FORI=1TO1@

1630 GETES$: IFE$< >""THEN166@

16480 NEXT

1658 GOTOlc@QQ

1660 E = ASCIE$)

1678 IF K(E)> = 8 THEN16608©

1688 IF E=2@ THEN D=D+10x%x<{(D>SX>:G0TO160aQ
16880 IF E=13 AND D>SX THEN177@
1788 IF E=13 THEN1E0®

1718 LABEL D,SY.,"#A ®",0,1,2,1,10,0,0
1729 LABEL D,SY.E#,1.1.2,1,10,8.0
1730 EQ$((D-SX>/18)=E%$

1740 D=D+10

1750 IF D>3186 THEN D=3160

1768 GOTO1600

17780 END PROC

1780 PROC EVAL.STRING

1730 EV$=""

1800 FOR 1=0T0(320-SX)>/10

1818 IF EQ#(I>=" "THEN1840

1820 EVS=EVS+EQ$H(I)

1830 EQ$C(I)=""

1840 NEXT

1850 END PROC

10-2

10.2 PROGRAM 2 - DOGGY

EXAMPLE PROGRAMS

This program draws a famous dog on the multi-colour graphics screen.

1008
1010
1829
1830
1040
1@5e
1860
18ve
1080
1080
1180
1118
1128
1130
11490
1150
1160
1170
11808
1190
1280
1218
122e
1230
124902
1258
1260
12780
128a
1290
1300
1310
1320
1330
13480
1358
1360
1370
1380
1388
1400
1410
1420
1430
14480
1458
1460
1470
1488
1480
1500

HIRES® ., 1

MULTI S.,2,11
COLOUR 6,3

BLOCK ©,100,1606,200,1
VLIN 48,168,199,3

VLIN 119,160,189,3
BLOCK 439,161,118,199,2
135,152,131,160.,3

L INE
DRAW
DRAW
HLIN
HLIN
HLIN
HLIN
HLIN
L INE
DRAW
HLIN
PLOT
DRAW

DRAW
L INE
DRAW
DRAW
L INE
DRAL
L INE
DRAW
L INE
DRAW
DRAI
DRAW
L INE
DRAW
HLIN
HLIN
HLIN
HLIN
HLIN
VLIN
VLIN
L INE
DRA
DRAW
DRAL
DRALI
DRAW
DRAW
DRA
DRAW

TO 34,160,3 TO 38,152 TO 135,152
125.,68,3 TO

TO

192.,48,119.,3
176.,48,119,3
165,48,118,3

897 .,59,127,3
37,

36,51.3

48,68,38.,69.,3

TO 31,153.,3

125,34,131,3

57,
TO 58.,108.3
ARC 54,110,90,300,9,4,6,3

rve,3

TO 51,80,3 TO 54,71
48,70 ,55,71,3
TO 74,67,3 TO 88,689 TO 89,72

TO

9e,73.,3

91.,68,91.73.3

TO

85.,.73.,3

v9,606,93,60,3
TO 88.,66,3 TO 93,70
899.,68,116,71,3

TO 118,68,3 TO

TO

188,56 .,185,52 .3

TO 185,35,3 TO

39,1106,114,3
43,111,114,3

69,88,107,3
B89,
68,
7e,
73

82,88,3
68,73.,3
47,67 ,3
47,67 .,3

183,54 ,102,54,3

TO
TO
TO
TO
TO
TO
TO
TO

1@1,49,3 TO 1@8®.,42 TO 88,38

91,3@,3
79,36,3
76,45,3
65,19,3
52,23,3
52,46,3
44,57 ,=

TO
TO
TO
TO
TO
TO
TO

85,29
78,39
70,47
59,19
so,27
52,49
44,64

10-3

118,68

187,35

TO
TO
TO
TO
TO
TO
TO

118,64 TO 113,35
187 ,36,3 TG 187,48 TO
TO0 1080,55,3

82,32
77,43
69,24
56,20
50,41
46,55
47,780

118,57

SIMONS’ BASIC EXTENSION

1510 LINE 52,50,54,54,3

1520 LINE 50,60,40,53,3

1538 CIRCLE 61,16,4,3,3

154@ LINE 96,72,88,69,3

1558 PAINT %@,156,2

1568 PAINT 5@,146,2

15728 PAINT S@,120,2

1580 PAINT 5@,98,2:PAINT 180,38,2
1590 PAINT 50,90,2:FPAINT 108,90,2
1688 PAINT 55,80 ,3:PAINT 55,110,3
1618 PAINT 60,16,3

1628 PAINT 71,60,2

1630 LOW COL 1,2,11

164@ PAINT 6@,5@,1:PAINT 88,40, 1
1650 PAINT 106,50, 1

166@ LOW COL 7,2,11

1670 ARC @,R,90,180,10,20,290, 1
1680 PAINT @,@,1

1698 FOR T=S@ TO 188 STEP 1@

170@ ANGL ©,0,T,40,4@,1

1710 NEXT

1720 DESIGN @,$CCo08

1730 @.ccovnvsecnrsennenncns
1790 @...cc000s BBB': « ais o) s s s euia
1750 B.:vs559 BBBBBB. . « s ssions
1760 @...... BBEBBBBB..BB.......

1770 ©...BBBBBBEEBEBBBBBBBB.
1780 ®,.BBBBBBBBBBBBBBBBBB. . ..
1739 ©.BBBBBBBRBBEBBBBBBBBEE. .
1399 ©BEBBBBBBEBBBBBEBBBBBBEE.
1319 CEBEBBBEBBBBBEBBBBBBBBBEE
1329 ~BBBEBBBBBBBBBBBBEEEBBBEE
1830 CEBERREBBRBBRBBEBBEBBBBBR
1349 ©.BEEBBEBBEEEBBBBEBBBRBBE.
1853 ©...BRERBBBBBBBBBBBBBE. . .
==Y I
= s
1888 O . s s e
1890 ©. .t it ee e e eeeennns
1982t eineannnnns
1910 ...ttt i i iineeeennnes
1920 ©. ..ot
1930 ©. ..t ie e see e
1949 MOB SET 1,48
195@ MOB SET 2,48
1960 MOB SET 3,48,
1970 MOB SET 4,48
1988 MOB SET 5,48
1999 MOB SET 6,48,1,1,0

2000 MMOB 1,190,590, 100,50 ,3,0

2610 MMOB 2,120,110,120,110,1,8
2020 MMOB 3,300 ,80,300,88,1,0

2030 MMOB 4,70,80,70,80,1,0

2040 MMOB 5,200,50,200,47,1,0

2050 MMOB 6,15@,80,150,80,3,0

2086@ INIT

2072 FORT=1TO61READ X

2080 SPRITE T,X%,0,2,0,0,0,0,0,0,0
2088 NEXT

2198 START

2110 GOTO211@

2120 DATA 1,-1,2,-2,1,-1

10-4

10.3 PROGRAM 3 - ROAD RACER

A winding road, and a fast car. How long can you last?

1000
1010
1820
1830
1040
1859
1060
1878
1980
1988
1100
1110
11z@
1130
1148
115@
1160
1170
1180
1198
120e
12102
1229
1238
1240
1250
1260
1278
1288@
1298
1308
1318
13280
1338
1348
1358
1360
1370
1380
1390
1400

DIM K(32),J(8) ,PX(?),PY{(7)>
K(1@8)=-1:K(18)=1:KY=197

READ ARR J

BATAH @, 8. 1,1,1,8,-1,-1, -1

READ ARR PX

READ ARR PY

DATA 8,25.,45,35,230,245,260.,25@
DATA ©,80, 160,240 ,25,85, 145,285
DEF FNDCI)>=C(RND(1)>%8)-4

DEF FNECI)=INT(RNDC1>%1)+1

FOR

I=0 TO RNDCTI>%10

Q=RNOCTI> : NEXT
DESIGN 1,248%64

©o..

.DDDDD. . ..

©@...0CDOCcD. ...

@e.BB.CCC.BB..
©.BBDCCCDEB. .
€.BB.CCC.BB. .

O...

@, .

e,

e..
©..

SECBE .. o

S EEET T
LECECE. ...

©BB.CCCCC.BB.
©BB.CCCCC.BB.
@BBDCCCCCDBB.
©BB.CCDCC.BB.
eBB...0D...BB.

0.
e..

.DDODD. . ..
~LCOCOE

DESIGN 1,2491%64

o

.CCccCC. ...

@..CCCccccc. ..
@ .Ccecccececece. .
@..CCCCCCE. ..

e..

.Cccccccce.

@©.CCBCCCCcccc

10-5

EXAMPLE PROGRAMS

SIMONS’ BASIC EXTENSION

141@
1420
143@
1440
145@
1460
1474
1480
1498@
15080
151@
1528
1530
154@
1558
1560
157@
15806
1582
1600
1518
1620
1830
1648
1658
i66@
1670
1680
16396
1700
17182
17280
1738
17409
1750
1760
1778
17360
1798
180a
181@
1328
18380
18480
185@

1860
1870
18808
1890
19500

@CccccBCcCCBBCC
@.CCcccCBBBCCC.
@.CBCCBCCCBC.
@C.CBBBCBBCC.
©.CcCccceBCC. ..
@CCcccercC.C..
©..BCCBCCCBC.
@.CCBCBCBRBCCC
@cccceBBCCCC.
@.CCcCcBBCCCC..
©...BCBBBCCCC
®@....BBCCBB..

IFPEEK(16000)=128 THEN1596

POKE 16000, 128

EXEC DEF.EXPL

HS$="00000a"

L@ >=101:LC1)=1@01:L.¢(2)=84:L.(3)>=71
L{4)>=66:L{(5)=72:L(6)=8I:L(7>=103
SL=15%8:D=07%8:SR=SL+D
S=54272:5D0=500

SX=16@0:5Y=21@

MN=4E5: MX =200

SC=SCREEN

VoL @

EXEC MOBS.OFF

PRINT CHR#$(147)> :COLOUR 2,12
PRINT AT(12,10)> "WKEYBOARD [F11"
PRINET AT die 12 ¢ or™"

PRINT ATC(12,14)> "JOYSTICK g

A = INKEY

IF A<>1 AND A<>7 THENI1T730

IF A=7 THEN1820©

IP=1

PRINT AT(11,16) "USE KEYS:-"

PRINT ATC(13,17> "M TO MOVE LEFT"
PRINT AT(13.18) "@#® TO MOVE RIGHT"
PAUSE 3

GOTO185@

IP=2

PRINT AT(8,16> "PLUG JOYSTICK IMN PORT 2"
PRAUSE 3

COLOUR 5,13

PRINT CHR$(147)

FORI=24 TO @ STEP-1

PRINT ATC14,1)>" |"2SPC(B>" |"
PRINT AT 14,1>" |":SPC(BX" |"
NEXT

10-6

1910
1528
1930
1940
1858
18960
1870
198@
19906
r=4l%]%]
ce10
2020
2038
204a
2058
2060
207e
2880
2090
210e
211e

2120
2136
2148
21508
2168
2178
2180
2198
2200
2210
22za
2238
2248
2250
2260
c27ea
2288
22399
2300
2318
23209
2330
2340
23580
2360
2378
2380
2398
2400

EXAMPLE PROGRAMS

PRINT AT(34,1)"SCORE"

PRINT AT(34,5)>"HIGH"

PRINT AT(34.,86)>"SCORE"

PRINT AT(34,7) RIGHT$(HS%,4)
POKES3265, 16

RLOCMOB @,SX,S5Y,0,1

INIT ¢ ON DETECT 2,2350:DETECT1
FORI=1 TO 7

RLOCMOB I,PXCI>,PY<(I),D,1
SPRITE 1,0,2,3,0,0,0,0,0,0,0
MOB SET 1.,241.,5,0,1

NEXT

MOB SET ©.24@0.,1.,0,1

CMoB ©.2

START 1,2,3,4,5,6.,7

vYoL 1S

WAVE 1,00001000:WAVE 1,9100008 1
ENVELOPE 1,3.,8,8.,8

PULSE 11,2048

DOKE S,568e

Ti$="000000"

X=FND (B>

FORI=1 TO FNE(S5)+2
SL=SL+X:SR=SL+D

IF SL<MN THENSL=MN:SR=SL +D

IF SR>MX THENSR=MX:SL=SR-D
L=INT{(SL/8>:R=INT{(SR/8)>:R1=40-R-2
OOWNB 6,0,20,25:00WNB 0 ,20,10,25
POKE SC+L .,L<{SL AND7>

POKE SC+R,L(SR ANDT)

T=T+1

IF T/5@=INT(T/5@> THEN EXEC INC.LEVEL
ON IP GOTOZ224@ .,2278

K=PEEK (KY)>AND3 1

Dx=K (K>

GOTO2298

J=J0Y AND15

OX=J¢J)

RHE=SPRX (B>

SK=8X+0X

SPRITE ©.0X.,0,2.0.0.0,0,8,08,1
PRINT AT(34,2) RIGHT#$(TI$,4)
NEXT

GOTOZ2 128

CLEAR

IF TI$>HSF THEN HS$=TI$

FOR I=1 TO 6@

WAVE 1, 10000001

DOKE S ,4000

MOB SET @0,291+IAND3,1.,0,1

10-7

SIMONS’ BASIC EXTENSION

2418 VYOoL 15-CI1/4)

24268 NEXT

2438 EXEC MOBS.OFF

2440 GOTO1600

2458 PROC DEF.EXPLN

2460 FORI=242%64 TO 244%64
24780 POKEI ,2tINTC(RNDC1)%8)
2488 MNEXT

2488 END PROC

2508 PROC INC.LEVEL

2510 O=D0+<(0>380)

2528 SY=SY+(SY>120)%3

2538 RLOCMOB @ ,SPRX(@),S5Y,0,1
2548 sSD=SD-(S0<1400) %40
25580 DOKE S.,SD

25680 END PROC

2578 PROC MOBS.OFF

2588 FORI = ® TO 7

2598 MOB OFF 1

2688 NEXT 1

2618 END PROC

10-8

ERROR MESSAGES

APPENDIX A
ERROR MESSAGES

In the course of using SIMONS’ BASIC with SIMONS’ BASIC EXTENSION, an error
message may appear. These messages are unique to SIMONS’ BASIC and SIMONS’
BASIC EXTENSION, and along with the HELP command (see section 2.5), make
debugging much easier, and faster.

Each error message, its meaning and probable cause is given in this appendix.

? BAD MODE

This occurs when any parameter in a command is outside the range allowed.

? NOT HEX CHARACTER

An attempt has been made to convert a non-hexadecimal number into its decimal
equivalent.

? NOT BINARY CHARACTER

An attempt has been made to convertanon-binary numberinto its decimal equivalent.
? UNTIL WITHOUT REPEAT

The UNTIL command has been used without any previously declared REPEAT.

? END LOOP WITHOUT LOOP

The END LOOP command has been used without any previously declared LOOP.
? END PROC WITHOUT EXEC

The END PROC command has been used without any procedure having been
executed.

? PROC NOT FOUND

An attempt has been made to select a procedure that does not exist.

? NOT ENOUGH LINES

Not enough lines have been set up for a MOB design grid.

? BAD CHAR FOR MOB IN LINE n

A parameter within the MOB design stage is outside the range defined. The line

number of the error (n), is always that where the DESIGN command was executed,
although this does not necessarily mean that the fault is in that line.

SIMONS'’ BASIC EXTENSION

? STACK TOO LARGE
This occurs if you have nested more than nine procedures or program loops.
? NULL STRING ERROR

An attempt has been made to pass an empty string to another command.

A-2

GLOSSARY

GLOSSARY

A list of terms used in this manual.

ADDRESS
Each memory location has its own identification number. This number is called the
address.

BASIC INTERPRETER

Since binary is all that the processor really understands, a BASIC INTERPRETER (i.e.
SIMONS’ BASIC) is a program that translates the commands that you type, into
strings of binary numbers that the computer will be able to understand, and act on.

BINARY

Number system to the base 2, the only number system that the processor really
understands. Applications of binary in computers result from simple two-state
devices, i.e. on, or off.

BIT
A single binary number, either a @, or a 1. The word bit comes from combining Binary
with diglT.

BUFFER
A temporary storage area in the computer’'s memory.

BUG
A mistake in the program that causes it to “crash out”.

BYTE
An eight-bit binary number. The largest decimal number that a byte can represent is
255.

DEBUGGING
Going through the program, and taking out all the bugs.

DEVICE NUMBER

Because data can be sent to a number of devices external to the computer (e.g.
screen, printer, disk drive), each device has its own identification code, so that the
computer can distinguish between them.

DIRECT MODE

In DIRECT MODE you may type a command (without a line number), and that
command is executed as soon as you press <RETURN>. Whereas in PROGRAM
MODE, none of the commands are executed until the program is RUN.

SIMONS’ BASIC EXTENSION

FLAG

A flag is a pointer in memory, that helps the computer keep track of what's going on. If
a condition occurs, then the flag is hoisted up the flag-pole, and the computer can act
accordingly.

FLOATING-POINT LIMITS

Floating-point constants allow you to work with figures of up to nine digits,
representing values between -999999999 to +999999999. Numbers smaller than 0.01,
or larger than 999999999 are printed in scientific notation.

HEXADECIMAL
Another major number system (the other is binary) used by computers. Hexadecimal
is to the base 16, and is closely related to binary.

INTEGER LIMITS
Integer values must be within the range -32768 to +32767.

KERNAL
The operating system of the COMMODORE 64. All input, output, and memory
management is controlled by the KERNAL.

NYBBLE
Half a byte, or a four-bit binary number.

PIXEL
The smallest addressable location on the screen. Everything that your computer
displays, from text to high-resolution graphics, is made up of pixels.

PROGRAM CRASH
An unwanted halt in program execution, usually resultant in an error message.

RAM
Random Access Memory; this is free memory available to the user. The contents of
RAM are not retained when the computer is switched off.

ROM
Read Only Memory; ROM is not available to the user, it contains the computer’s
operating system, and is retained when the computer is switched off.

SECONDARY ADDRESS
The secondary address is a supplementary command used when transferring data
between the computer, and one of its peripheral devices.

SPRITE UPDATE

Calculations relating to the current position of the sprite, and its new position. The
frequency with which these calculations, and actual sprite movements take place are
determined by the parameter sp, in the SPRITE command.

INDEX

INDEX

Page
ANDIB] /AN LIL . 50 0ct 2 e i 5 7260 G615 505503 01 90D 2519 B € 5061 G5 5 3 90 610 6 51208 0 6.5 5 5310 6 5 © 30 0 LG i 3-9
PABIB) /A RHEY 1 6 oo o 000 010 5 506 0 05 01550 048 G40 S B 58 078 G BB G 0 6 B 5 G 8 66 80 0.6 30 6 0 3-5
INLTTEIEY 6 01 016 0005 63 41 36005 655 1 6160 61510/ 6165 B30 0315 5010 0108 53,96 6.6 5 51510 0.5 65/0)5 5.0 016 6515 0 016 0 /¢ 2-3
BYANCIK o506 6.0m 6008 000000 65005 0080800000 00E 690008 0055050005300 605030000a0s 4-6
B AR B E R e e o e e s SR 8-6
B G I 1L A S e e e e 7-11
EUZIER 5 0071 131 0 i 3 500 0 G5 5.5 10 01 30 1 2 1010 03005 8 55 3 4 G383 5900 64 58 040 460 16 5 9-4
BINS 55 o050 50 6 61010051 8 (1 51011 6168 660510 551 0 /433 0.5 €115610 0 GG 0 G20 O 0.3 5 01010 630 0 .9 6 616 510161 63 58 4-2
L R 00 B B B B 50 0) 5 1) G 3 KR o) R R e S 6 e e e e 4-3
C/NLICAT o0 iao 6060 000656550005 5000005500 08 R SE A 668 &5 AR G B0 i 6059 & o B 4-4
G B BIE o o 600 2 1 5 i) Bk 1 e Ol 3 5 B 0 5 0.5 5 £ 5100 0.6 S5 &0 8L 6.6 0. B i B 6 b B D 7-7
GV 56 0 oms 000006050660 0660060 560008660000 60E:000H0000000 500638300060 800 a0 2-5
& AN (G e R e 8-7
LS 2 2 0 &0 6 o 3 3 3 e 3 s e o e o) 3 Y 3 2 5 O G S e e 8-8
CHONNIITINIULE 4 s o0 0o 000 0.0 00 50 0 085 500 @RS B8 0 685 S50 65 608 60 G5 5 0k O 50 8 BRI6 D 5 8-18
Converting from decimal/binary to hexadecimalcoovennt. 4-2
Converting from decimal/hexadecimal to binary, 4-2
(CIOMENT INBURY 6o 505 6 06 5608 203 70 000 918 G40 10 6 045 640 €1 5780 0 1 G515 3 010 515/ 5 9 0 018 @ 5210 68 0.6 2 3-11
R AT e e L e 8-20
DHEIEIT 005 o0 0 11008 5150 6 75165 50005 515 5516 G0 6 5. 010 0 08 50 S0 0 0 B0 31610 0 057 3516 5.6°0. 5 5510 0/ 551610 66 0 6 01 5-2
BN 4 00060 0 680 556 Gi b 060 009 B0 800ESE D8 GO EC0COEE0a0000500000530000090 884856 4-1
DIEIIE TS r 56 000605 085000 6 0515056 060056 (085S 0 08500 §as00n600ase0an0sss000swE 2-2
B S G N e e e e e e 7-9
DI /AMLIE & p 00 0 0 om0 6000 50 010001910 151K 2 5 6 616 8 & o A6 0 G 5 6400 G 00 5166 5 0 0.6 8 3-10
BIIVE /A(RIRE o eiio o 6 ol 0.6 540 6 018 G513 B L8 .6 510 G SR A1 B B0 B8 6.6 i 1651 G116 550 B 6 6 01 1 00 e 3-8
9o [VAN o] e T | - .o 1S T TR I 10-3
DIDINIE 5 o 560 6600 06 0550 6 66 8.5 60 08 606 66 B 0 G0 6HE 000G a0 605000 000 68D 6.4 B S0 0 geE 5-1
IDIRVENRY T 056 0o 06600008000 0600 600000600000 NAEERDHEI0EHAT0 0000000 CG00EI006H 6-6
D) S e et ol et oo ko e o a2 A e i e e e el e st ol s e 2-8
SICTONL, 10 5005100 00 5155 63 516345 6 5.0 G0 5 955 6.0 5 G118 5.0 55 910 B8 0.5 610 0.6 516 0910 51615 55563 O i) 5 7-6
ELEMEN T S & ittt ittt tte e e e e eae e eeeeeaaee et e eensoneseeaesnssasens 3-14
BVIAIL smnocuansoomsnon ot oo 6 o006 000e00 00 F080000E0006000000055230008a¢00000 4-5
B T E R o e e et e te ool ok e e S o et el s) e el o e o) s s kehmliaah et s oo i e ok 9-2
SO 1o o 0 00 0 0.6 6.0 5 6 0550 610 00 55510 0 5.0 5 0 F1A 606 A6k B 0165 5516 01 515 510 60 9 5516 8 G HG 5 60 9 7-4
B R E e e S et 2-7
T2V BT 5 oo 0 0 O) o 6 K1) i 55 i) B o o 1 Al 3 e e B B 0 6 G B B0 € 4-1
@Graph plotter PEOGFAR .« vy« nee tsemas s s e s o dinma s viesines 2o ess s s s s o was 10-1
(EHRIID) v o1 535 040 012 5 5.6 0 G310 58 .51 513 015 3.6 610 61365 2 5 03 6 B4 .01 G 1 01 i G 125 8 ke 7 2 € 6-1

SIMONS’ BASIC EXTENSION

Page
s s 2-4
] = LI 4-2
High-resolution graphicso 6-1
ikl =) S R SRR P PR T - S 5-2
EILIIN 6.0 0 58 5859205556 s o v 8 6 S 5 m g 6-7
HLOBD o 55500 000 00m w0 wwsnis s 0 5150 i 555 8 338 $o6 55 0 B e e ey e Do 6-4
P RO T2 5 e e ia ey s 765 808 A5 et AR B 00 2 1 6-3
IIMIEOOL. oo o0050 557505510 50 0 50 5 o o 8 L o e S A oot s LR 8-10
ST e it sn st iinn 80800y o ammns smrpeas $EH IS 58 e don ool e 4 1 8-9
IBFLIT BB 5 ... o vovnmmam s somsns o imm s 8 de 500 9505 855 s o n b bl A B 3-11
IPRPIE I v 5 0 5500 5 0 B P 13 et e oo . 5 et e T e 2 e LT 8-13
LABEL 500 o 60t s 005 05 4 ihe sl nions s s s wimisdhons s 51 o 5o s st d St S bt 6-5
Loading SIMONS’ BASIC EXTENSIONouutttn et 1-3
LOMEM L i s ssimmne s 500 p 5 o 585 588 58500 5 Eom e e e om0 od s e e 5-3
BONMYBEIED 101 L. s s mmtin 635095001548 5 210 15 8 e e 3 v e i A] A 7-1
BV KL 50n w28 05 55155 o o v 8 2 5)4 e s Sl 3-15
/1L 5 AT R SR SRR . - Ly (S o e I T s 7-8
W) . 225 o d e dd D s ons vimimm s s) I W o P 3-14
AN) J 2 c oo s 6010 s 50505001 5 051805 8808 R o i 1 s ekt e ey It 9-2
L0 B R S e e U BRI R S 3-10
RIS AR - o imin s 5 508 5 om0 858 B 5 o o e £ 3-7
Multi-colour graphiCs ...t 6-1
MUSIC COMMANGSottt e e e e e e 9-1
PUOIBRINIAE £ 26 56 55 ¢ 55 55 508 655 m1m 1o v i . i s 5t e o 8-9
ON DETECT .ttt e e 8-17
RREPABE 0o 000t n 5.8 mmmsmisnwns s b d oo i enss e s sn s syl eadan 7-3
PRINTEARIBEL oo § 062505 #0505 5105m e m om0 wn ¢ onm s #1055 w16 b s o b e 3-4
PR O T G 055 50855, 5 510 e o e =m0 85 RS £ R # ik G I 2-6
BUIEL e 0 505 5600 5505 om0 3700 00 5 5 ST M8 5 & 550585 e s o e e o 7-4
R s Bl e Tl o e v 3 B30 A W B R AR E S5 5 BT e e e F e o S 9-3
e R O L 7-3
B | D 3-12
RENUMBER 2-1
BENVERRGEL L L. e oty w6 98005 5 A5 5 S0 S BRTES 5 om o mewrmom o s e s e o s e B 8-15
BOAU TACET DEOTNAMN o ais o s sis 0 555 85 rmim s mre e wimodia0s + 450 x5 255 8 5 8 el e s rE e 10-5
BUONATIE o1 0510415 000555 1 mn i m mooiniemi) v os 0 a4 S AL 5 R 7-10

INDEX

Page
SIOALE - 5000 tnssims « et mvs wia st wiwismw s s s Flwis 415 a5 B 55 5 518 s & e mera e iem e atw e o e 6-8
SCHR 7-8
SOOL L eu s v s siits 55000 b 516 5 515 505k 9135 o i o e ¢ e s E o e 4 B 7-7
SORATOHL 565 010 w5585 5658018 wie o ors 1o s 1w 5 8 i e < e et oo s e o 5 5 e 3-12
S e B D P L e 5-3
L S 6-9
B Y e e iminy e s s e € RS S 4R RS e o o e e e e s e s 6-10
BET AR . eoomsinm o 5s 500 555 55 58 515 $15 5 Flle «tereimrn ol st e a8 o2l o0 s 2 it 3-3
SIFOWN &0 cin v 6m 0 5060505 €576 2003 8im om0 e e e O £ 8-15
L A S 3-16
SPRITE 8-2
SR L il mb Fle e s 119 0 08551 ks 5 et SaFie et oo e e = gt e e s 8-12
DPRRXK oot 10 w50 065000 519 §13 5 5515 558 oot i B 6 e el 8-11
SIPRY incs v 5055 5005 510 ool a1 o s w6 < 58 e s e s e e 8-12
L O S S 8-7
SUB AL . 3-9
SEIB ARIR . o s v s 2 2 55 40 580 1 > 08 5 5 i e et e s e e B 3-6
SRIIVE 5000 5 e 015 0000090553 5 5 50508 55 3 i e o ot a1 B o e S SR s 3-13
L 6-2
TRANSFER . 8-19
= O 7-5
VLIN 6-7
D S R 8-5
7 = B e 8-6
ZER ARR . 3-5
o 669 600 O 06 616 010 6 0 B0 6 35101 016 55 6 S0 010 56 01510 0105 63 01 51 1 G 5 B 6 B8 5 e €y B 7-12

©COMMODORE BUSINESS MACHINES
(UK) LIMITED

Al rights reserved. No part of this program or
accompanying literature may be duplicated,
copied, transmitted or otherwise reproduced

without the express written consent of the
Publishers.

COMMODORE BUSINESS MACHINES
(UK) LIMITED,

675 Ajax Avenue, SIough Trading Estate, Slough,
Berks. SL1 4BG, England.

MADE IN ENGLAND

r commodore

COMPUTER

